福田のおもしろ数学264〜なぜ球の表面積は4πr^3なのかの証明 - 質問解決D.B.(データベース)

福田のおもしろ数学264〜なぜ球の表面積は4πr^3なのかの証明

問題文全文(内容文):
半径$r$の球の体積が$\frac{4πr^3}{3}$あることを既知として、表面積が$4πr^2$であることを証明して下さい。
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
半径$r$の球の体積が$\frac{4πr^3}{3}$あることを既知として、表面積が$4πr^2$であることを証明して下さい。
投稿日:2024.09.22

<関連動画>

福田の数学〜早稲田大学2022年教育学部第4問〜3次関数の増減と3次方程式の解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{4}}$自然数$a,b$に対し、3次関数$f_{a,b}(x),g_{a,b}(x)$を
$f_{a,b}(x)=x^3+3ax^2+3bx+8$
$g_{a,b}(x)=8x^3+3bx^2+3ax+1$
で定める。次の問いに答えよ。
(1)次の条件$(\textrm{I})(\textrm{II})$の両方を満たす自然数の組(a,b)
で$a+b \leqq 9$となるものを全て求めよ。
$(\textrm{I})f_{a,b}(x)$が極値をもつ
$(\textrm{II})g_{a,b}(x)$が極値をもつ
(2)3次方程式$f_{a,b}(x)=0$の3つの解が$\alpha,\beta,\gamma$であるとき
3次方程式$g_{a,b}(x)=0$の解を$\alpha,\beta,\gamma$で表せ。
(3)次の条件$(\textrm{III})$を満たす自然数の組$(a,b)$で$a+b \leqq 9$となるものを全て求めよ。
$(\textrm{III})$3次方程式$f_{a,b}(x)=0$が相異なる3つの実数解をもつ。

2022早稲田大学教育学部過去問
この動画を見る 

【ゼロからわかる】整式の割り算(高校数学Ⅱ)

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の整式$A,B$について、$A$を$B$で割った商と余りを求めよ。
(1)$A=a^2+6a+5,B=a+3$
(2)$A=4x^3-3x+2,B=2x+3$
この動画を見る 

福田のおもしろ数学275〜分母の違う項がたくさん並んだ方程式の解

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の方程式を満たす$x$を求めて下さい。
$\frac{x-2020}{1}+\frac{x-2019}{2}+\cdots+\frac{x-2000}{21} = \frac{x-1}{2020}+\frac{x-2}{2019}+\cdots+\frac{x-21}{2000} $
この動画を見る 

滋賀県立大 不等式の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#滋賀県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
不等式
$ax^2+y^2+az^2-xy-yz-xz \geqq 0$が任意の実数$x,y,z$でつねに成り立つ$a$の範囲を求めよ

出典:2007年滋賀県立大学 過去問
この動画を見る 

【数Ⅱ】対数の定義と方程式【対数の意味とは。計算公式・底の変換公式を使いこなして対数方程式を解こう】

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
対数の定義と方程式に関して解説していきます.
この動画を見る 
PAGE TOP