福田のおもしろ数学264〜なぜ球の表面積は4πr^3なのかの証明 - 質問解決D.B.(データベース)

福田のおもしろ数学264〜なぜ球の表面積は4πr^3なのかの証明

問題文全文(内容文):
半径$r$の球の体積が$\frac{4πr^3}{3}$あることを既知として、表面積が$4πr^2$であることを証明して下さい。
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
半径$r$の球の体積が$\frac{4πr^3}{3}$あることを既知として、表面積が$4πr^2$であることを証明して下さい。
投稿日:2024.09.22

<関連動画>

練習問題8(数検準1級 教員採用試験 極限値からの区分求積法)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#平均変化率・極限・導関数#その他#数学検定#数学検定準1級#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{n\to\infty} \dfrac{\sqrt[n]{1\times 3\times 5\times ・・・ \times(2n-1)}}{n}$
これを解け.
この動画を見る 

京都大 三次方程式有理数解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3+x-8=0$の解は無理数であることを示せ.

1966京都大過去問
この動画を見る 

【数Ⅱ】【式と証明】整式の割り算2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#模試解説・過去問解説
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の第1式が第2式で割り切れるように、定数$l,m$の値を定めよ。
(1)$ x^3+lx^2+mx+2 ,x^2+2x+2
(2) $x^3+lx^2+m ,(x+2)^2$
この動画を見る 

【短時間でマスター!!】二項定理と多項定理を解説!〔現役塾講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学2B
二項定理・多項定理
$(3x-1)^7$を展開したときに$x^2$の係数は?
$(x^2-2y+3z)^6$の$x^3y^2z$の係数は?
この動画を見る 

【数Ⅱ】三角関数と方程式 4 sinとcosの2次方程式【倍角の公式を使って次数下げ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$(1) \sin2x=\cos x(0 \leqq x \lt 2\pi)$
$(2)\sin x+\sqrt3 \cos x=1(0 \leqq x \lt 2\pi)$
$(3)2\sin^2x+7\sin x+3=0(0 \leqq x \lt 2\pi)$
$(4)\sin^2x+\sin x \cos x-1=0(0 \leqq x \lt 2\pi)$
$(5)\sin x+\cos x+2\sin x \cos x-=0(0 \leqq x \lt 2\pi)$
この動画を見る 
PAGE TOP