【高校受験対策/数学/確率6】「難しそうに見せているだけ」という気持ちを持って欲しい - 質問解決D.B.(データベース)

【高校受験対策/数学/確率6】「難しそうに見せているだけ」という気持ちを持って欲しい

問題文全文(内容文):
高校受験対策・確率6

Q
下の図のように、さいころの1から6までの目が1つずつ表示された6つの箱がある。
それぞれの箱の中には、表示されたさいころの目と同じ数の玉が入っている。
大小2つのさいころを同時に1回投げ、それぞれのさいころの出た目の数によって、 箱の中の玉を移動させる。
このとき下の問1、問2に答えなさい。
ただし、さいころはどの目が出ることも同様に確からしいものとする。

問1
大きいさいころの出た目と同じ目が表示された箱から玉を1個だけ取り出す。
その取り出した1個の玉を、小さいさいころの出た目と同じ目が表示された箱に入れる。
このとき次の(1)、(2)の問いに答えよ。

(1) 空の箱ができる確率を求めよ。

(2) 6つの箱のうち、入っている玉の数が同じ箱が3つできる確率を求めよ。

問2
大きいさいころの出た目と同じ目が表示された箱から玉をすべて取り出す。
その取り出したすべての玉を、小さいさいころの出た目と同じ目が表示された箱に入れる。
このとき、6つの箱のうち入っている玉の数が同じ箱が2つできる確率を求めよ。
単元: #数学(中学生)#高校入試過去問(数学)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・確率6

Q
下の図のように、さいころの1から6までの目が1つずつ表示された6つの箱がある。
それぞれの箱の中には、表示されたさいころの目と同じ数の玉が入っている。
大小2つのさいころを同時に1回投げ、それぞれのさいころの出た目の数によって、 箱の中の玉を移動させる。
このとき下の問1、問2に答えなさい。
ただし、さいころはどの目が出ることも同様に確からしいものとする。

問1
大きいさいころの出た目と同じ目が表示された箱から玉を1個だけ取り出す。
その取り出した1個の玉を、小さいさいころの出た目と同じ目が表示された箱に入れる。
このとき次の(1)、(2)の問いに答えよ。

(1) 空の箱ができる確率を求めよ。

(2) 6つの箱のうち、入っている玉の数が同じ箱が3つできる確率を求めよ。

問2
大きいさいころの出た目と同じ目が表示された箱から玉をすべて取り出す。
その取り出したすべての玉を、小さいさいころの出た目と同じ目が表示された箱に入れる。
このとき、6つの箱のうち入っている玉の数が同じ箱が2つできる確率を求めよ。
投稿日:2020.01.06

<関連動画>

指数の計算 敬愛学園  令和4年度 2022 入試問題100題解説92問目!

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#指数関数と対数関数#指数関数#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^{13}+2^{13}+2^{14}+2^{15}=2^▢$

2022敬愛学園
この動画を見る 

和が分かればいい 筑波大学附属

アイキャッチ画像
単元: #数学(中学生)#中3数学#円#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
$\stackrel{\huge\frown}{AB} + \stackrel{\huge\frown}{CD} = ?$
*図は動画内参照

筑波大学附属高等学校
この動画を見る 

正しいか、正しくないか 慶應義塾高校(改)

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
正しいか正しくないか?
(ア)a,b,cについてac=bcならばa=b
(イ)a,bについて$a^2+b^2=2ab$ならばa=b
(ウ)a,bについて$a^2>b^2$ならばa>b

慶應義塾高等学校(改)
この動画を見る 

高校受験でも軌跡の問題あります。滝高校

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
正方形ABCDにおいて点Qが頂点B→C→D→Aの順に辺上を動くとき
PQの中点が描く図形の長さは?
*図は動画内参照

滝高等学校
この動画を見る 

佐賀県立高校入試2021年5⃣(4)「相似」

アイキャッチ画像
単元: #数学(中学生)#中3数学#相似な図形#高校入試過去問(数学)#佐賀県立高校
指導講師: 重吉
問題文全文(内容文):
佐賀県立高校入試2021年5⃣(4)「相似」
-----------------
動画内の図のように、ABを斜辺とする2つの直角三角形ABCとABDがあり、辺BCとADの交点をEとする。
また、AC=2cm、BC=3cm、CE=1cmとする。

点Eから辺ABに重線をひき、その交点をFとする。 このとき、(ア)、(イ)の問いに答えなさい。
(ア)線分EFの長さを求めなさい。
(イ)△BCFの面積をS$_{1}$、△BEDの面積をS$_{2}$とするとき、S$_{1}$:S$_{2}$を
  最も簡単な整数の比で表しなさい。
この動画を見る 
PAGE TOP