福田の数学〜中央大学2022年理工学部第1問〜定積分で表された関数 - 質問解決D.B.(データベース)

福田の数学〜中央大学2022年理工学部第1問〜定積分で表された関数

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ 関数f(x)が\hspace{280pt}\\
f(x)=\int_0^{\pi}tf(t)\cos(x+t)dt+\frac{1}{4}\\
を満たしている。このとき、\\
A= \int_0^{\pi}tf(t)\cos tdt,\ \ \ B=\int_0^{\pi}tf(t)\sin tdt\ \ \ \ ... ①\\
とおいてf(x)をAとBで表すと、\\
f(x)=A×(\ \ \ \boxed{\ \ ア\ \ }\ \ \ )+B×(\ \ \ \boxed{\ \ イ\ \ }\ \ \ )+\frac{1}{4}\ \ \ \ ... ②\\
となる。ここで、\\
\\
\\
\int_0^{\pi}t\cos tdt=-2,\ \ \ \int_0^{\pi}t\cos^2 tdt=\boxed{\ \ ウ\ \ },\ \ \ \int_0^{\pi}t\sin tdt=\pi,\ \ \ \\
\int_0^{\pi}t\sin^2 tdt=\boxed{\ \ エ\ \ },\ \ \ \int_0^{\pi}t\cos t\sin tdt=\boxed{\ \ オ\ \ } \\
\\
\\
を用い、①に②を代入して整理すると、AとBの満たす連立方程式\\
\\
\left\{
\begin{array}{1}
(\ \ \ \boxed{\ \ カ\ \ }\ \ \ )A-\pi B+2=0\\
\pi A +(\ \ \ \boxed{\ \ キ\ \ }\ \ \ )B-\pi = 0\\
\end{array}
\right.\\
\\
が得られる。この連立方程式を解くと\\
A=\frac{\boxed{\ \ ク\ \ }}{\pi^4-\pi^2-16},\ \ \ B=\frac{\pi (\ \ \ \boxed{\ \ ケ\ \ }\ \ \ )}{\pi^4-\pi^2-16}\\
が得られ、したがって\\
f(x)= \frac{\boxed{\ \ ク\ \ }}{\pi^4-\pi^2-16}×(\ \ \ \boxed{\ \ ア\ \ }\ \ \ )+\frac{\pi (\ \ \ \boxed{\ \ ケ\ \ }\ \ \ )}{\pi^4-\pi^2-16}×(\ \ \ \boxed{\ \ イ\ \ }\ \ \ )+\frac{1}{4}\\
となる。
\\
\\
\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ }の解答群\\
ⓐ\sin x\ \ \ ⓑ-\sin x\ \ \ ⓒ\cos x\ \ \ ⓓ-\cos x\ \ \
ⓔ\tan x\ \ \ ⓕ-\tan x\ \ \ \\
\\
\\
\boxed{\ \ ウ\ \ },\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ }の解答群\\
ⓐ\pi \ \ \ ⓑ\frac{\pi}{2}\ \ \ ⓒ\frac{\pi}{4}\ \ \ ⓓ\frac{\pi}{8}\ \ \ ⓔ-\pi \ \ \ \\
ⓕ-\frac{\pi}{2}\ \ \ ⓖ-\frac{\pi}{4}\ \ \ ⓗ-\frac{\pi}{8}\ \ \ ⓘ\pi^2 \ \ \ ⓙ\frac{\pi^2}{2}\ \ \ \\
ⓚ\frac{\pi^2}{4}\ \ \ ⓛ\frac{\pi^2}{8}\ \ \ ⓜ-\pi^2 \ \ \ ⓝ-\frac{\pi^2}{2}\ \ \ ⓞ-\frac{\pi^2}{4}\ \ \ \\
ⓟ-\frac{\pi^2}{8}\ \ \ ⓠ\frac{\pi^2+4}{16}\ \ \ ⓡ\frac{\pi^2-4}{16}\ \ \ ⓢ\frac{-\pi^2+4}{16}\ \ \ ⓣ-\frac{\pi^2+4}{16}\ \ \ \\
\\
\\
\boxed{\ \ カ\ \ },\boxed{\ \ キ\ \ },\boxed{\ \ ク\ \ },\boxed{\ \ ケ\ \ }の解答群\\
ⓐ\pi^2+2\ \ \ ⓑ\pi^2-2\ \ \ ⓒ-\pi^2+2\ \ \ ⓓ-\pi^2-2\ \ \ \\
ⓔ\pi^2+4\ \ \ ⓕ\pi^2-4\ \ \ ⓖ-\pi^2+4\ \ \ ⓗ-\pi^2-4\ \ \ \\
ⓘ\pi^2+6\ \ \ ⓙ\pi^2-6\ \ \ ⓚ-\pi^2+6\ \ \ ⓛ-\pi^2-6\ \ \ \\
ⓜ\pi^2+8\ \ \ ⓝ\pi^2-8\ \ \ ⓞ-\pi^2+8\ \ \ ⓟ-\pi^2-8\ \ \ \\
\end{eqnarray}

2022中央大学理工学部過去問
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ 関数f(x)が\hspace{280pt}\\
f(x)=\int_0^{\pi}tf(t)\cos(x+t)dt+\frac{1}{4}\\
を満たしている。このとき、\\
A= \int_0^{\pi}tf(t)\cos tdt,\ \ \ B=\int_0^{\pi}tf(t)\sin tdt\ \ \ \ ... ①\\
とおいてf(x)をAとBで表すと、\\
f(x)=A×(\ \ \ \boxed{\ \ ア\ \ }\ \ \ )+B×(\ \ \ \boxed{\ \ イ\ \ }\ \ \ )+\frac{1}{4}\ \ \ \ ... ②\\
となる。ここで、\\
\\
\\
\int_0^{\pi}t\cos tdt=-2,\ \ \ \int_0^{\pi}t\cos^2 tdt=\boxed{\ \ ウ\ \ },\ \ \ \int_0^{\pi}t\sin tdt=\pi,\ \ \ \\
\int_0^{\pi}t\sin^2 tdt=\boxed{\ \ エ\ \ },\ \ \ \int_0^{\pi}t\cos t\sin tdt=\boxed{\ \ オ\ \ } \\
\\
\\
を用い、①に②を代入して整理すると、AとBの満たす連立方程式\\
\\
\left\{
\begin{array}{1}
(\ \ \ \boxed{\ \ カ\ \ }\ \ \ )A-\pi B+2=0\\
\pi A +(\ \ \ \boxed{\ \ キ\ \ }\ \ \ )B-\pi = 0\\
\end{array}
\right.\\
\\
が得られる。この連立方程式を解くと\\
A=\frac{\boxed{\ \ ク\ \ }}{\pi^4-\pi^2-16},\ \ \ B=\frac{\pi (\ \ \ \boxed{\ \ ケ\ \ }\ \ \ )}{\pi^4-\pi^2-16}\\
が得られ、したがって\\
f(x)= \frac{\boxed{\ \ ク\ \ }}{\pi^4-\pi^2-16}×(\ \ \ \boxed{\ \ ア\ \ }\ \ \ )+\frac{\pi (\ \ \ \boxed{\ \ ケ\ \ }\ \ \ )}{\pi^4-\pi^2-16}×(\ \ \ \boxed{\ \ イ\ \ }\ \ \ )+\frac{1}{4}\\
となる。
\\
\\
\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ }の解答群\\
ⓐ\sin x\ \ \ ⓑ-\sin x\ \ \ ⓒ\cos x\ \ \ ⓓ-\cos x\ \ \
ⓔ\tan x\ \ \ ⓕ-\tan x\ \ \ \\
\\
\\
\boxed{\ \ ウ\ \ },\boxed{\ \ エ\ \ },\boxed{\ \ オ\ \ }の解答群\\
ⓐ\pi \ \ \ ⓑ\frac{\pi}{2}\ \ \ ⓒ\frac{\pi}{4}\ \ \ ⓓ\frac{\pi}{8}\ \ \ ⓔ-\pi \ \ \ \\
ⓕ-\frac{\pi}{2}\ \ \ ⓖ-\frac{\pi}{4}\ \ \ ⓗ-\frac{\pi}{8}\ \ \ ⓘ\pi^2 \ \ \ ⓙ\frac{\pi^2}{2}\ \ \ \\
ⓚ\frac{\pi^2}{4}\ \ \ ⓛ\frac{\pi^2}{8}\ \ \ ⓜ-\pi^2 \ \ \ ⓝ-\frac{\pi^2}{2}\ \ \ ⓞ-\frac{\pi^2}{4}\ \ \ \\
ⓟ-\frac{\pi^2}{8}\ \ \ ⓠ\frac{\pi^2+4}{16}\ \ \ ⓡ\frac{\pi^2-4}{16}\ \ \ ⓢ\frac{-\pi^2+4}{16}\ \ \ ⓣ-\frac{\pi^2+4}{16}\ \ \ \\
\\
\\
\boxed{\ \ カ\ \ },\boxed{\ \ キ\ \ },\boxed{\ \ ク\ \ },\boxed{\ \ ケ\ \ }の解答群\\
ⓐ\pi^2+2\ \ \ ⓑ\pi^2-2\ \ \ ⓒ-\pi^2+2\ \ \ ⓓ-\pi^2-2\ \ \ \\
ⓔ\pi^2+4\ \ \ ⓕ\pi^2-4\ \ \ ⓖ-\pi^2+4\ \ \ ⓗ-\pi^2-4\ \ \ \\
ⓘ\pi^2+6\ \ \ ⓙ\pi^2-6\ \ \ ⓚ-\pi^2+6\ \ \ ⓛ-\pi^2-6\ \ \ \\
ⓜ\pi^2+8\ \ \ ⓝ\pi^2-8\ \ \ ⓞ-\pi^2+8\ \ \ ⓟ-\pi^2-8\ \ \ \\
\end{eqnarray}

2022中央大学理工学部過去問
投稿日:2022.10.21

<関連動画>

福田の数学〜明治大学2021年理工学部第1問(4)〜定積分で表された関数と変曲点

アイキャッチ画像
単元: #微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#大学入試解答速報#数学#明治大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (4)\ 連続関数f(x)は区間\ x \geqq 0で正の値をとり、区間\ x \gt 0で微分可能\\
かつf'(x)≠0であるとする。さらに、実数の定数aと関数f(x)が\\
\int_0^x3t^2f(t)dt-(x^3+3)f(x)+\log f(x)=a (x \geqq 0)\\
を満たすとする。このとき\\
a=-\boxed{\ \ ヌ\ \ }-\log\boxed{\ \ ネ\ \ }\\
である。また、曲線\ y=f(x)\ (x \gt 0)の変曲点のx座標をpとすると\\
p^3=\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }}\ である。ただし、\log xはxの自然対数である。
\end{eqnarray}
この動画を見る 

福田の数学〜東京医科歯科大学2023年医学部第3問〜積分で定義された関数と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $a$,$b$を正の実数、$p$を$a$より小さい正の実数とし、すべての実数$x$について
$\displaystyle\int_p^{f(x)}\frac{a}{u(a-u)}du$=$bx$, 0<$f(x)$<$a$
かつ$f(0)$=$p$を満たす関数$f(x)$を考える。このとき以下の問いに答えよ。
(1)$f(x)$を$a$,$b$,$p$を用いて表せ。
(2)$f(-1)$=$\frac{1}{2}$, $f(1)$=1, $f(3)$=$\frac{3}{2}$のとき、$a$,$b$,$p$を求めよ。
(3)(2)のとき、$\displaystyle\lim_{x \to -\infty}f(x)$, $\displaystyle\lim_{x \to \infty}f(x)$ を求めよ。
この動画を見る 

国際数学オリンピック 積和

アイキャッチ画像
単元: #積分とその応用#不定積分#定積分#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\cos\dfrac{\pi}{7}-\cos\dfrac{2\pi}{7}+\cos\dfrac{3\pi}{7}=\dfrac{1}{2}$を示せ.

国際数学オリンピック
この動画を見る 

【高校数学】毎日積分12日目【難易度:★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^1x^2e^{-x}dx$
これを解け.
この動画を見る 

#数検準1級1次-1 #定積分

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#定積分#不定積分・定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
以下の定積分を解け。
$\displaystyle \int_{0}^{1} \displaystyle \frac{x}{x^4+2x^2+1} dx$

出典:数検準1級1次
この動画を見る 
PAGE TOP