小樽商科大 3次方程式 整数解 有理数解 高校数学 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

小樽商科大 3次方程式 整数解 有理数解 高校数学 Mathematics Japanese university entrance exam

問題文全文(内容文):
小樽商科大学過去問題
$x^3-3x-1=0$の解をα
次の(1)~(3)を示せ。
(1)αは整数でない
(2)αは有理数でない
(3)αは$p+q\sqrt3$(p,q有理数)の形ではない。
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#小樽商科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
小樽商科大学過去問題
$x^3-3x-1=0$の解をα
次の(1)~(3)を示せ。
(1)αは整数でない
(2)αは有理数でない
(3)αは$p+q\sqrt3$(p,q有理数)の形ではない。
投稿日:2018.09.07

<関連動画>

福田の数学〜立教大学2023年理学部第1問(4)〜2次方程式が整数解をもつ条件

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#2次関数とグラフ#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (4)-1≦$\alpha$≦1 とする。$x$に関する方程式
$x^2$-$\frac{3}{2}x$-$\frac{9}{4}$+$\alpha$=0
が整数解をもつとき、$\alpha$の値は$\boxed{\ \ エ\ \ }$である。

2023立教大学理学部過去問
この動画を見る 

【高校数学】  数Ⅰ-88  正弦定理と余弦定理①

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎△ABCにおいて、次のものを求めよ。
①$B=60°,C=75°,b=2\sqrt{ 6 }$のとき$a$

②$a=4,b=\sqrt{ 21 },C=5$のとき$B$

③$b=60°,a:b=1:3$のとき$\sin A$
この動画を見る 

【数Ⅰ】【図形と計量】正弦、余弦定理応用1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$△ABC$において,$a:b=(1+\sqrt{3}):2$,外接円の半径 $R=1$,$C=60°$のとき,$a,b,c,A,B$を求めよ。
この動画を見る 

福田の数学〜東北大学2023年文系第1問〜三角形の面積と内接円と外接円の半径

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と計量#三角比への応用(正弦・余弦・面積)#三角形の辺の比(内分・外分・二等分線)#周角と円に内接する四角形・円と接線・接弦定理#三角関数#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 平面上の半径1の円Cの中心Oから距離4だけ離れた点Lをとる。点Lを通る円Cの2本の接線と円Cの接点をそれぞれM、Nとする。以下の問いに答えよ。
(1)三角形LMNの面積を求めよ。
(2)三角形LMNの内接円の半径をrと、三角形LMNの外接円の半径Rをそれぞれ求めよ。

2023東北大学文系過去問
この動画を見る 

角度を求める C 日大桜ヶ丘

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#平面図形#角度と面積#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle A=?$
*図は動画内参照

日本大学櫻丘高等学校
この動画を見る 
PAGE TOP