福田の数学〜上智大学2025TEAP利用型文系第1問〜放物線と円の位置関係と面積 - 質問解決D.B.(データベース)

福田の数学〜上智大学2025TEAP利用型文系第1問〜放物線と円の位置関係と面積

問題文全文(内容文):

$\boxed{1}$

座標平面上の放物線$C_1:y=x^2$と

円$C_2:x^2+(y-b)^2=a^2$を考える。

ただし、$a,b$は正の実数とする。

(1)$C_1$と$C_2$が共有点をちょうど$3$つもつための

必要十分条件は

$b=\boxed{ア}a$かつ$a\gt \dfrac{\boxed{イ}}{\boxed{ウ}}$である。

(2)$C_1$と$C_2$が異なる$2$点で接するための

必要十分条件は

$b=\boxed{エ}a^2+\dfrac{\boxed{オ}}{\boxed{カ}}$かつ$a\gt \dfrac{\boxed{キ}}{\boxed{ク}}$である。

(ただし、$C_1$と$C_2$が共有点$P$で接するとは、

$P$における$C_1$の接線と$C_"$の接線が等しいことをいう)

また、このとき$2$つの接点のうち$x$座標が

正のものを$A(\alpha,\beta)$とすると、

$\beta=\boxed{ケ}a^2+\dfrac{\boxed{コ}}{\boxed{サ}}$である。

$A$における共通の接線の傾きが$\sqrt3$であるとき、

直線$y=\beta$の下側で、

$C_1$と$C_2$に囲まれた部分の面積は

$\dfrac{\boxed{シ}}{\boxed{ス}}\sqrt{\boxed{セ}}-\dfrac{\pi}{\boxed{ソ}}$である。

$2025$年上智大学TEAP利用型文系過去問題
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

座標平面上の放物線$C_1:y=x^2$と

円$C_2:x^2+(y-b)^2=a^2$を考える。

ただし、$a,b$は正の実数とする。

(1)$C_1$と$C_2$が共有点をちょうど$3$つもつための

必要十分条件は

$b=\boxed{ア}a$かつ$a\gt \dfrac{\boxed{イ}}{\boxed{ウ}}$である。

(2)$C_1$と$C_2$が異なる$2$点で接するための

必要十分条件は

$b=\boxed{エ}a^2+\dfrac{\boxed{オ}}{\boxed{カ}}$かつ$a\gt \dfrac{\boxed{キ}}{\boxed{ク}}$である。

(ただし、$C_1$と$C_2$が共有点$P$で接するとは、

$P$における$C_1$の接線と$C_"$の接線が等しいことをいう)

また、このとき$2$つの接点のうち$x$座標が

正のものを$A(\alpha,\beta)$とすると、

$\beta=\boxed{ケ}a^2+\dfrac{\boxed{コ}}{\boxed{サ}}$である。

$A$における共通の接線の傾きが$\sqrt3$であるとき、

直線$y=\beta$の下側で、

$C_1$と$C_2$に囲まれた部分の面積は

$\dfrac{\boxed{シ}}{\boxed{ス}}\sqrt{\boxed{セ}}-\dfrac{\pi}{\boxed{ソ}}$である。

$2025$年上智大学TEAP利用型文系過去問題
投稿日:2025.08.04

<関連動画>

福田の数学〜上智大学2021年TEAP利用理系第4問〜楕円と弦の中点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#軌跡と領域#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$Oを原点とする座標平面において、楕円$D:\frac{x^2}{6}+\frac{y^2}{2}=1$ 上に異なる2点$P_1,P_2$
がある。$P_1$における接線$l_1$と$P_2$における接線$l_2$の交点を$Q(a,\ b)$とし、線分$P_1P_2$の
中点をRとする。

(1)$P_1$の座標を$(x_1,\ y_1)$とするとき、$l_1$の方程式は$x_1x+\boxed{\ \ チ\ \ }\ y_1y+\boxed{\ \ ツ\ \ }=0$
と表される。

(2)直線$P_1P_2$の方程式は、a,bを用いて$ax+\boxed{\ \ テ\ \ }\ by+\boxed{\ \ ト\ \ }=0$と表される。

(3)3点O,R,Qは一直線上にあって$\overrightarrow{ OR }=\frac{\boxed{\ \ ナ\ \ }}{a^2+\boxed{\ \ ニ\ \ }\ b^2}\overrightarrow{ OQ }$が成り立つ。

(4)$l_1$と$l_2$のどちらもy軸と平行ではないとする。このとき、$l_1$と$l_2$の傾きは
tの方程式$(a^2+\boxed{\ \ ヌ\ \ })t^2+\boxed{\ \ ネ\ \ }abt+(b^2+\boxed{\ \ ノ\ \ })=0$ の解である。

(5)$l_1$と$l_2$が直交しながら$P_1,P_2$が動くとする。
$(\textrm{i})Q$の軌跡の方程式を求めよ。   $(\textrm{ii})R$のy座標の最大値を求めよ。
$(\textrm{iii})R$の軌跡の概形を描け。

2021上智大学理系過去問
この動画を見る 

福田の数学〜慶應義塾大学看護医療学部2025第1問(4)〜三角関数の最大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(4)関数$y=(2\sin 2x+\sin x)+\sin x (0\leqq x \lt 2\pi)$は、

$x=\boxed{オ}$のとき最大値$\boxed{カ}$をとる。

$2025$年慶應義塾大学看護医療学部過去問題
この動画を見る 

【高校数学】数Ⅲ-16 円と分点②

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の等式を満たす点$z$はどのような図形をえがくか.

①$\vert z-3i \vert =2$

②$\vert z+5-2i \vert =4$

③$\vert z-3 \vert=\vert z+1-i \vert$

④$\vert z+4i \vert =2\vert z+i \vert $
この動画を見る 

福田の数学〜上智大学2022年TEAP文系型第3問〜3次方程式の解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
aを実数の定数として3次関数
$f(x)=9x^3-9x+a$
を考える。
(1) $y=f(x)$のグラフとx軸の共有点が2つ以上あるようなaの範囲は
$\boxed{ネ}\sqrt{\boxed{ノ}}\leqq a \leqq \boxed{ハ}\sqrt{\boxed{ヒ}}$である。
(2)$a= \boxed{ハ}\sqrt{\boxed{ヒ}}$のとき、方程式$f(x)= 0$の最も小さい解は
$\frac{\boxed{フ}}{\boxed{ヘ}}\sqrt{\boxed{ヒ}}$
であり、$y=f(x)$のグラフとx軸の囲む図形の面積は$\frac{\boxed{マ}}{\boxed{ミ}}$である。

2022上智大学文系過去問
この動画を見る 

#16 数検1級1次過去問 複素関数

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数平面#複素数平面#数学検定#数学検定1級#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$\boxed{2}$

$i^2=-1$とする.
$\cos(6i)-i\sin(6i)$を求めよ.
この動画を見る 
PAGE TOP