福田の数学〜上智大学2025TEAP利用型文系第1問〜放物線と円の位置関係と面積 - 質問解決D.B.(データベース)

福田の数学〜上智大学2025TEAP利用型文系第1問〜放物線と円の位置関係と面積

問題文全文(内容文):

$\boxed{1}$

座標平面上の放物線$C_1:y=x^2$と

円$C_2:x^2+(y-b)^2=a^2$を考える。

ただし、$a,b$は正の実数とする。

(1)$C_1$と$C_2$が共有点をちょうど$3$つもつための

必要十分条件は

$b=\boxed{ア}a$かつ$a\gt \dfrac{\boxed{イ}}{\boxed{ウ}}$である。

(2)$C_1$と$C_2$が異なる$2$点で接するための

必要十分条件は

$b=\boxed{エ}a^2+\dfrac{\boxed{オ}}{\boxed{カ}}$かつ$a\gt \dfrac{\boxed{キ}}{\boxed{ク}}$である。

(ただし、$C_1$と$C_2$が共有点$P$で接するとは、

$P$における$C_1$の接線と$C_"$の接線が等しいことをいう)

また、このとき$2$つの接点のうち$x$座標が

正のものを$A(\alpha,\beta)$とすると、

$\beta=\boxed{ケ}a^2+\dfrac{\boxed{コ}}{\boxed{サ}}$である。

$A$における共通の接線の傾きが$\sqrt3$であるとき、

直線$y=\beta$の下側で、

$C_1$と$C_2$に囲まれた部分の面積は

$\dfrac{\boxed{シ}}{\boxed{ス}}\sqrt{\boxed{セ}}-\dfrac{\pi}{\boxed{ソ}}$である。

$2025$年上智大学TEAP利用型文系過去問題
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

座標平面上の放物線$C_1:y=x^2$と

円$C_2:x^2+(y-b)^2=a^2$を考える。

ただし、$a,b$は正の実数とする。

(1)$C_1$と$C_2$が共有点をちょうど$3$つもつための

必要十分条件は

$b=\boxed{ア}a$かつ$a\gt \dfrac{\boxed{イ}}{\boxed{ウ}}$である。

(2)$C_1$と$C_2$が異なる$2$点で接するための

必要十分条件は

$b=\boxed{エ}a^2+\dfrac{\boxed{オ}}{\boxed{カ}}$かつ$a\gt \dfrac{\boxed{キ}}{\boxed{ク}}$である。

(ただし、$C_1$と$C_2$が共有点$P$で接するとは、

$P$における$C_1$の接線と$C_"$の接線が等しいことをいう)

また、このとき$2$つの接点のうち$x$座標が

正のものを$A(\alpha,\beta)$とすると、

$\beta=\boxed{ケ}a^2+\dfrac{\boxed{コ}}{\boxed{サ}}$である。

$A$における共通の接線の傾きが$\sqrt3$であるとき、

直線$y=\beta$の下側で、

$C_1$と$C_2$に囲まれた部分の面積は

$\dfrac{\boxed{シ}}{\boxed{ス}}\sqrt{\boxed{セ}}-\dfrac{\pi}{\boxed{ソ}}$である。

$2025$年上智大学TEAP利用型文系過去問題
投稿日:2025.08.04

<関連動画>

大学入試問題#254 神戸大学2012 #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#積分とその応用#定積分#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$2 \leqq n$自然数
$\displaystyle \int_{n}^{n^3}\displaystyle \frac{dx}{x\ log\ x}$を計算せよ。

出典:2012年神戸大学 入試問題
この動画を見る 

09兵庫県教員採用試験(数学:5番 面積)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#その他#面積、体積#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{5}$
曲線$y=\vert x \vert \sqrt{2x+1}$
と$x$軸で囲まれた部分の面積を求めよ.
この動画を見る 

福田の数学〜慶應義塾大学薬学部2025第1問(3)〜絶対値の付いた対数関数の最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(3)実数$x$に対して、関数

$f(x)=\left \vert \dfrac{1}{10^{-x}\log 10^{-x}}\right \vert$

は、$x=\boxed{キ}$のとき最小値$\boxed{ク}$をとる。

ただし、$x$は$x\gt 0$を満たし、対数は自然対数とする。

なお、$\log 2=0.69,\log 3=1.10,\log 5=1.61,$

自然対数の底$e$は$2.72$として計算し、

$\boxed{キ}$と$\boxed{ク}$は小数で答えなさい。

値が小数第$2$位までで割り切れない場合は、

小数第$3$位を四捨五入して小数第$2$位まで求めなさい。

$2025$年慶應義塾大学薬学部過去問題
この動画を見る 

07大阪府教員採用試験(数学:1番 三角関数と極限)

アイキャッチ画像
単元: #数Ⅱ#三角関数#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}$
$x-2\sin\theta-\cos2\theta$
$y=\displaystyle \sum_{n=1}^{\infty} \left(\dfrac{x}{6}\right)^n$のとりうる値の範囲を求めよ.
この動画を見る 

【高校数学】 数Ⅱ-161 関数の最大値・最小値⑥

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①関数$f(x)=x^3-3x^2+2(0 \leqq x \leqq a)$の最大値と最小値、およびそのときのxの値を求めよう。
ただし、$a \gt 0$とする。
この動画を見る 
PAGE TOP