福田の数学〜東京理科大学2022年理工学部第3問〜接線と法線と囲まれる面積 - 質問解決D.B.(データベース)

福田の数学〜東京理科大学2022年理工学部第3問〜接線と法線と囲まれる面積

問題文全文(内容文):
関数f(x)を次で定める。
$f(x)=\frac{1}{x}\ \ (x \gt 0)$
座標平面上の曲線y=f(x)をCとする。C上の点$P(2,\ \frac{1}{2})$と、正の定数tに対して
y軸上の点$A(0,\ -t)$をとる。点Aと点Pを通る直線を$l_1$とする。
(1)直線$l_1$を表す方程式を、tを用いて表せ。
(2)C上の点PにおけるCの法線とy軸の交点を$(0,\ -t_0)$とおく。$t_o$を求めよ。
上の(2)で求めたt_0に対してt \lt t_0とする。点Pを通り、直線$l_1$に垂直な直線を
$l_2$とする。$l_2$とCの交点のうち、点Pと異なる点をQとおく。
(3)点Qの座標を、tを用いて表せ。
最後に$t=\frac{3}{2}$の時を考える。
(4)点Qを通るCの接線を$l_3$とする。このとき、2つの直線$l_1,l_3$および曲線Cで
囲まれた部分の面積を求めよ。

2022東京理科大学理工学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
関数f(x)を次で定める。
$f(x)=\frac{1}{x}\ \ (x \gt 0)$
座標平面上の曲線y=f(x)をCとする。C上の点$P(2,\ \frac{1}{2})$と、正の定数tに対して
y軸上の点$A(0,\ -t)$をとる。点Aと点Pを通る直線を$l_1$とする。
(1)直線$l_1$を表す方程式を、tを用いて表せ。
(2)C上の点PにおけるCの法線とy軸の交点を$(0,\ -t_0)$とおく。$t_o$を求めよ。
上の(2)で求めたt_0に対してt \lt t_0とする。点Pを通り、直線$l_1$に垂直な直線を
$l_2$とする。$l_2$とCの交点のうち、点Pと異なる点をQとおく。
(3)点Qの座標を、tを用いて表せ。
最後に$t=\frac{3}{2}$の時を考える。
(4)点Qを通るCの接線を$l_3$とする。このとき、2つの直線$l_1,l_3$および曲線Cで
囲まれた部分の面積を求めよ。

2022東京理科大学理工学部過去問
投稿日:2022.11.15

<関連動画>

重積分⑥-5 #157【曲面・平面で囲まれた体積】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#積分とその応用#不定積分・定積分#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
直円柱$x^2+y^2=4x$
$xy$平面,曲面$Z=xy^2$で囲まれた体積$V$を求めよ.
この動画を見る 

福田の一夜漬け数学〜絶対不等式(1)〜受験編

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
実数aに対し、不等式 $y \leqq 2ax-a^2+2a+2$の表す領域をD(a)とする。
(1)$-1 \leqq a \leqq 2$を満たす全てのaに対しD(a)の点となるような
点(p,q)の範囲を図示せよ。

(2)$-1 \leqq a \leqq 2$を満たすいずれかのaに対しD(a)の点となるような
点(p,q)の範囲を図示せよ。
この動画を見る 

【数学Ⅱ/積分】絶対値を含む定積分

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の定積分を求めよ
$\displaystyle \int_{0}^{3} |x^2-1|dx$
この動画を見る 

大学入試問題#770「減点注意!」 千葉大学(2003) #微積の応用

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a$は定数とし、$n$は2以上の整数とする。
関数$f(x)=ax^n log\ x-ax(x \gt 0)$の最小値が-1のとき、定積分$\displaystyle \int_{1}^{e} f(x)\ dx$の値を$n$と$e$を用いて表せ。

出典:2003年千葉大学 入試問題
この動画を見る 

横浜国大 三角方程式 4倍角

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$0 \leqq \theta \lt 2\pi$
$1-2\cos 3\theta+\cos4\theta=0$
解の個数を求めよ

出典:2000年横浜国立大学 過去問
この動画を見る 
PAGE TOP