福田の数学〜東京医科歯科大学2024医学部第2問〜ベクトルの勾配と無理不等式の解 - 質問解決D.B.(データベース)

福田の数学〜東京医科歯科大学2024医学部第2問〜ベクトルの勾配と無理不等式の解

問題文全文(内容文):
$\fbox{2} xyz$ 空間において、点$\mathrm{ A }( 1, 0, 0 )$, $\mathrm{ B }(0, 1, 0)$, $\mathrm{ C }(-1, 0, 0)$, $\mathrm{ D }(0, 0, 1)$ をとり、線分 $\mathrm{ CD }$の中点を$\mathrm{ M }$とする。さらに、$\mathrm{ N }$を線分$\mathrm{ BD }$上の点とする。また、$z$軸と平行でない直線上の異なる2点$\mathrm{ P }(x, y, z), \mathrm{ Q }(x', y', z')$ に対して
$\frac{z' - z}{\sqrt{(x' - x) ^ 2 + (y' - y) ^ 2}}$をベクトル$\overrightarrow{ \mathrm{ PQ } }$の勾配と呼ぶ。$\overrightarrow{ \mathrm{ AN } }$の勾配を$t_1$、$\overrightarrow{ \mathrm{ NM } }$の勾配を$t_2$とするとき、
以下の各問いに答えよ。
(1) $t_2 = 0$ となるように$\mathrm{ N }$をとったとき、$t_1$の値を求めよ。
(2) $l = |\overrightarrow{ \mathrm{ AN } }|+|\overrightarrow{ \mathrm{ NM } }|$とし、$l$が最小となるように$\mathrm{ N }$をとったとき、$l$の値を求めよ。
(3) $0 \leqq t_{2} \leqq t_{1}$ となるように$\mathrm{ N }$をとったとき、$\mathrm{ N }$の$y$座標を$s$とする。$s$がとりうる値の範囲を求めよ。
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\fbox{2} xyz$ 空間において、点$\mathrm{ A }( 1, 0, 0 )$, $\mathrm{ B }(0, 1, 0)$, $\mathrm{ C }(-1, 0, 0)$, $\mathrm{ D }(0, 0, 1)$ をとり、線分 $\mathrm{ CD }$の中点を$\mathrm{ M }$とする。さらに、$\mathrm{ N }$を線分$\mathrm{ BD }$上の点とする。また、$z$軸と平行でない直線上の異なる2点$\mathrm{ P }(x, y, z), \mathrm{ Q }(x', y', z')$ に対して
$\frac{z' - z}{\sqrt{(x' - x) ^ 2 + (y' - y) ^ 2}}$をベクトル$\overrightarrow{ \mathrm{ PQ } }$の勾配と呼ぶ。$\overrightarrow{ \mathrm{ AN } }$の勾配を$t_1$、$\overrightarrow{ \mathrm{ NM } }$の勾配を$t_2$とするとき、
以下の各問いに答えよ。
(1) $t_2 = 0$ となるように$\mathrm{ N }$をとったとき、$t_1$の値を求めよ。
(2) $l = |\overrightarrow{ \mathrm{ AN } }|+|\overrightarrow{ \mathrm{ NM } }|$とし、$l$が最小となるように$\mathrm{ N }$をとったとき、$l$の値を求めよ。
(3) $0 \leqq t_{2} \leqq t_{1}$ となるように$\mathrm{ N }$をとったとき、$\mathrm{ N }$の$y$座標を$s$とする。$s$がとりうる値の範囲を求めよ。
投稿日:2024.08.19

<関連動画>

【数C】ベクトルの基本㉑空間における平面上の点を平面の方程式から求める

アイキャッチ画像
単元: #空間ベクトル#空間ベクトル#数学(高校生)#数C
教材: #チャート式#青チャートⅡ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
3点A(2,0,0),B(0,1,0),C(0,0,-2)が与えられたとき、原点Oから平面ABCに下ろした垂線の足を点Hとする。このとき、点Hの座標と線分OHの長さを求めよ
この動画を見る 

福田の数学〜慶應義塾大学看護医療学部2025第3問〜空間ベクトルと四面体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

座標空間内に

$3$点$A(-1,1,6),B(0,3,6),C(1,1,5)$をとる。

このとき、$\vert \overrightarrow{AB} \vert =\boxed{ス},\overrightarrow{AB}・\overrightarrow{AC}=\boxed{セ}$であり、

$\angle BAC$の大きさを$\theta$とすると、

$\sin\theta=\boxed{ソ}$である。

ただし、$0\lt \theta \lt \pi$とする。

また、三角形$ABC$の面積は$\boxed{タ}$である。

さらに、

$3$点$A,B,C$の定める平面$ABC$に原点$O$から

垂線$OH$を下ろすと、点$H$の座標は$\boxed{チ}$であり、

四面体$OABC$の体積は$\boxed{ツ}$である。

$2025$年慶應義塾大学看護医療学部過去問題
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型理系第2問〜立方体の切断と位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#立体図形#立体切断#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 一辺の長さが2である立方体OADB-CFGEを考える。
$\overrightarrow{OA}$=$\overrightarrow{a}$, $\overrightarrow{OB}$=$\overrightarrow{b}$, $\overrightarrow{OC}$=$\overrightarrow{c}$とおく。辺AFの中点をM、辺BDの中点をNとし、3点O,M,Nを通る平面$\pi$で立方体を切断する。
(1)平面$\pi$は辺AF,BD以外に辺$\boxed{\ \ あ\ \ }$とその両端以外で交わる。
(2)平面$\pi$と辺$\boxed{\ \ あ\ \ }$との交点をPとすると$\overrightarrow{OP}$=$\boxed{\ \ い\ \ } \overrightarrow{a}$+$\boxed{\ \ う\ \ } \overrightarrow{b}$+$\boxed{\ \ え\ \ } \overrightarrow{c}$
(3)断面の面積は$\displaystyle\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\sqrt{\boxed{\ \ ケ\ \ }}$である。
(4)切断されてできる立体のうち、頂点Aを含むものの体積は$\displaystyle\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}$である。
(5)平面$\pi$と線分CDとの交点をQとする。
(i)点Qは線分CDを$\boxed{\ \ お\ \ }$に内分する。
(ii)$\overrightarrow{OQ}$=$\boxed{\ \ か\ \ } \overrightarrow{a}$+$\boxed{\ \ き\ \ } \overrightarrow{b}$+$\boxed{\ \ く\ \ } \overrightarrow{c}$である。

$\boxed{\ \ い\ \ }~\boxed{\ \ え\ \ }$, $\boxed{\ \ か\ \ }~\boxed{\ \ く\ \ }$の選択肢
(a)0 (b)1 (c)$\frac{1}{2}$ (d)$\frac{1}{3}$ (e)$\frac{2}{3}$ (f)$\frac{1}{4}$ (g)$\frac{3}{4}$ (h)$\frac{1}{5}$ 
(i)$\frac{2}{5}$ (j)$\frac{3}{5}$ (k)$\frac{4}{5}$ (l)$\frac{1}{6}$ (m)$\frac{5}{6}$

$\boxed{\ \ お\ \ }$の選択肢
(a)1:1 (b)2:1 (c)1:2 (d)3:1 (e)1:3 (f)4:1 (g)3:2 
(h)2:3 (i)1:4 (j)5:1 (k)1:5 
この動画を見る 

福田の数学〜上智大学2022年TEAP理系型第2問〜空間ベクトルと軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#空間ベクトル#図形と方程式#軌跡と領域#空間ベクトル#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
一辺の長さが1である立方体QACB-CFGEを考える。
$\overrightarrow{ OA } = \overrightarrow{ a },\ \overrightarrow{ OB } $
$= \overrightarrow{ b },\ \overrightarrow{ OC } = \overrightarrow{ c },$ とおき、実数s,tに対し
点P,Qを
$\overrightarrow{ OP } =(1-s)\overrightarrow{ a } +s\ \overrightarrow{ b }+$
$s\ \overrightarrow{ c },\ \ \overrightarrow{ OQ } =\overrightarrow{ a } +t\ \overrightarrow{ b }+(1-t)\ \overrightarrow{ c }$
を満たす点とする。
(1)点Pは直線$\boxed{あ}$上にあり、点Qは直線$\boxed{い}$上にある。
(2)直線$\boxed{あ}$と直線$\boxed{い}$とは$\boxed{う }$

$\boxed{う}$の選択肢
$(\textrm{a})$一致する $(\textrm{b})$平行である $(\textrm{c})$直交する $(\textrm{d})$交わるが直交しない。
$(\textrm{e})$ねじれの位置にあって垂直である $(\textrm{f})$ねじれの位置にあって垂直でない。

(3)線分PQの長さは、$s=\boxed{え},\ t=\boxed{お}$のとき最小値をとり、
このとき$PQ^2=\boxed{か}$である。

$\boxed{え}\ \boxed{お}\ \boxed{か}$の選択肢
$(\textrm{a})0\ \ \ (\textrm{b})\frac{1}{6}\ \ \ (\textrm{c})\frac{1}{4}\ \ \ (\textrm{d})\frac{1}{3}$
$(\textrm{e})\frac{1}{2}\ \ \ (\textrm{f})\frac{2}{3}\ \ \ (\textrm{g})\frac{3}{4}\ \ \ (\textrm{h})1$
$(\textrm{i})\frac{4}{3}\ \ \ (\textrm{j})\frac{3}{2}\ \ \ (\textrm{k})2\ \ \ (\textrm{l})3$

(4)$s,t$が$0 \leqq s \leqq 1,\ 0 \leqq t \leqq 1$の範囲を動くとき、線分PQの中点Mの動く領域は
$\boxed{き}$であり、その面積は$\frac{\sqrt{\boxed{オ}}}{\boxed{カ}}$である。

$\boxed{き}$の選択肢
$(\textrm{a})$正三角形 $(\textrm{b})$直角二等辺三角形 $(\textrm{c})$直角二等辺三角形でない直角三角形
$(\textrm{d})$直角二等辺三角形でない直角三角形でもない三角形 $(\textrm{e})$正方形 $(\textrm{f})$正方形でない長方形
$(\textrm{g})$長方形でない平行四辺形 $(\textrm{h})$並行四辺形でない四角形$(\textrm{i})$五角形$(\textrm{i})$六角形
(5)$s,t$が$0 \leqq s \leqq 1,\ 0 \leqq t \leqq 1$の範囲を動くとき、線分PQが通過する領域の体積は
$\frac{\boxed{キ}}{\boxed{ク}}$である。

2022上智大学理系過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年商学部第2問〜空間ベクトルと平面の方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$点Oを原点とするxyz座標空間に、2点A(2,3,1),\ B(-2,1,3)をとる。
また、x座標が正の点Cを、$\overrightarrow{ OC }$を$\overrightarrow{ OA }$と$\overrightarrow{ OB }$に垂直で、
$|\overrightarrow{ OC }|=8\sqrt3$となるように定める。
(1)$\triangle OAB$の面積は$\boxed{\ \ ア\ \ }\sqrt{\boxed{\ \ イ\ \ }}$である。
(2)点Cの座標は$(\boxed{\ \ ウ\ \ },\ \boxed{\ \ エオ\ \ },\ \boxed{\ \ カ\ \ })$である。
(3)四面体OABCの体積は$\boxed{\ \ キク\ \ }$である。
(4)平面ABCの方程式は$\ x+\boxed{\ \ ケ\ \ }\ y+\boxed{\ \ コ\ \ }\ z-\ \boxed{\ \ サシ\ \ }=0$である。
(5)原点Oから平面ABCに垂線OHを下ろしたとき、点Hの座標は
$(\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セソ\ \ }},\frac{\boxed{\ \ タ\ \ }}{\boxed{\ \ チ\ \ }},\frac{\boxed{\ \ ツテ\ \ }}{\boxed{\ \ トナ\ \ }})$
である。

2022慶應義塾大学商学部過去問
この動画を見る 
PAGE TOP