鬼の定積分「投了・・・」 By 英語orドイツ語シはBかHか さん - 質問解決D.B.(データベース)

鬼の定積分「投了・・・」 By 英語orドイツ語シはBかHか さん

問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} log (\displaystyle \frac{\sin\ x+\cos\ x+1}{\sin\ 2x+1}) dx$
単元: #定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} log (\displaystyle \frac{\sin\ x+\cos\ x+1}{\sin\ 2x+1}) dx$
投稿日:2023.12.13

<関連動画>

大学入試問題#166 東京大学 改 (2022) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}}\cos\ x\ log(\cos\ x)dx$を求めよ。

出典:2022年東京大学 入試問題
この動画を見る 

福田の1.5倍速演習〜合格する重要問題027〜神戸大学2016年度理系数学第3問〜2曲線の相接条件と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
aを正の定数とし、2曲線$C_1:y=\log x,C_2:y=ax^2$が点Pで接している。
以下の問いに答えよ。
(1)Pの座標とaの値を求めよ。
(2)2曲線$C_1,C_2$とx軸で囲まれた部分をx軸のまわりに1回転させてできる
立体の体積を求めよ。

2016神戸大学理系過去問
この動画を見る 

大学入試問題#325 宮崎大学(2013) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\pi}^{\pi}|e^{\cos\ x}\sin\ x|dx$

出典:2013年宮崎大学 入試問題
この動画を見る 

大学入試問題#486「なんか見たことある形」 埼玉医科大学(2023) #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} log(\displaystyle \frac{\cos\ x}{\sin\ x}+1) dx$

出典:2023年埼玉医科大学 入試問題
この動画を見る 

大学入試問題#244 南山大学(2014) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#南山大学
指導講師: ますただ
問題文全文(内容文):
$a$:正の定数
$\displaystyle \int_{-a}^{a}\displaystyle \frac{|x|e^x}{(1+e^x)^2}dx$を計算せよ

出典:2014年南山大学 入試問題
この動画を見る 
PAGE TOP