数学「大学入試良問集」【6−1 三角形の成立条件と鈍角三角形】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【6−1 三角形の成立条件と鈍角三角形】を宇宙一わかりやすく

問題文全文(内容文):
3辺の長さが$a-1,a,a+1$である正三角形について、次の問いに答えよ。
(1)この三角形が純角三角形であるとき、$a$の範囲を求めよ。
(2)この三角形の1つの内角が$150^{ \circ }$であるとき、外接円の半径を求めよ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#鳴門教育大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
3辺の長さが$a-1,a,a+1$である正三角形について、次の問いに答えよ。
(1)この三角形が純角三角形であるとき、$a$の範囲を求めよ。
(2)この三角形の1つの内角が$150^{ \circ }$であるとき、外接円の半径を求めよ。
投稿日:2021.04.14

<関連動画>

福田の1.5倍速演習〜合格する重要問題039〜早稲田大学2019年度理工学部第2問〜正n角形の周の長さと極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
nは3以上の自然数とする。面積1の正n角形$P_n$を考え、その周の
長さを$L_n$とする。次の問いに答えよ。
(1)$(L_n)^2$を求めよ。
(2)$\lim_{n \to \infty}L_n$を求めよ。
(3)$n \lt k$ならば$(L_n)^2 \gt (L_k)^2$となることを示せ。

2019早稲田大学理工学部過去問
この動画を見る 

早稲田大(国際教養)微分

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3-3mx+m-3=0$が3個の異なる実数解$\alpha ,\beta,\gamma$をもつ$(\alpha \lt \beta \lt \gamma)m,\alpha,\beta,\gamma$の範囲を求めよ

出典:2018年早稲田大学 過去問
この動画を見る 

福田の数学〜早稲田大学2025商学部第3問〜三角形を一辺を軸として回転させたときの回転体の体積の最大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{3}$

空間内の異なる$4$点

$A,B,C,D$が$AD=BC=2$、

$AB=CD=1$を満たし、線分$AD$と線分$BC$が

点$P$のみで交わり、$P$は$AD$と$BC$をそれぞれ

$AP:PD=s:(1-s),$

$BP:PC=t:(1-t) \ (0\lt s \lt t,0\lt t \lt 1)$

に内分しているとする。次の問いに答えよ。

(1)$s$を$t$を用いて表せ。

(2)$t$のとりうる値の範囲を求めよ。

(3)線分$BC$を軸にして$\triangle ABP$を$1$回転させるとき、

$\triangle ABP$の辺と内部が通過する部分の体積を

$V$とする。$V$の最大値を求めよ。

$2025$年早稲田大学商学部過去問題
この動画を見る 

上智大 関数の最大最小

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師:
問題文全文(内容文):
$f(x)=\displaystyle \frac{x^2+ax+b}{x^2-x+1}$の最大値が$3$、最小値が$\displaystyle \frac{1}{3}$

$(a,b)$の値を求めよ

出典:2005年上智大学 過去問
この動画を見る 

東大 数学 Mathematics Japanese university entrance exam Tokyo University

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$実数
$a^2+b^2=16$
$a^3+b^3=44$

(1)
$a+b$の値は?

(2)
$a^n+b^n(n \geqq 2,$自然数$)$が4の倍数であることを示せ

出典:1997年東京大学 過去問
この動画を見る 
PAGE TOP