篠原京大塾:2021年(文系数学)過去問解説【篠原好】 - 質問解決D.B.(データベース)

篠原京大塾:2021年(文系数学)過去問解説【篠原好】

問題文全文(内容文):
2021年(文系数学)過去問解説
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
2021年(文系数学)過去問解説
投稿日:2022.02.01

<関連動画>

福田の数学〜北海道大学2025理系第4問〜複素数平面上の点の軌跡と2円が共有点をもつ条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{4}$

$a$を正の実数とする。

(1)$a$が$1$でないとき、複素数$z$についての方程式

$a \vert z-1 \vert = \vert (a-2)z +a \vert$

を考える。

この方程式を満たす$z$全体の集合を

複素数平面上に図示せよ。

$2025$年北海道大学理系過去問題
この動画を見る 

福田の数学〜東京医科歯科大学2023年医学部第2問PART2〜場合分けされた連立漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ xyz空間において、3点(0,0,0),(1,0,0),(0,1,0)を通る平面$\pi_1$と3点(1,0,0),(0,1,0),(0,0,1)を通る平面$\pi_2$を考える。$x_0$=1, $y_0$=2, $z_0$=-2として、点P${}_0$($x_0$,$y_0$,$z_0$)から始めて、次の手順でP${}_1$($x_1$,$y_1$,$z_1$), P${}_2$($x_2$,$y_2$,$z_2$),... を決める。
・$k$が偶数のとき、$\pi_1$上の点で点P${}_k$($x_k$,$y_k$,$z_k$)からの距離が最小となるものをP${}_{k+1}$($x_{k+1}$,$y_{k+1}$,$z_{k+1}$)とする。
・$k$が奇数のとき、$\pi_2$上の点で点P${}_k$($x_k$,$y_k$,$z_k$)からの距離が最小となるものをP${}_{k+1}$($x_{k+1}$,$y_{k+1}$,$z_{k+1}$)とする。
このとき、次の問いに答えよ。
(1)$\pi_2$に直交するベクトルのうち、長さが1で$x$成分が正のもの$n_2$を求めよ。
(2)$x_{k+1}$,$y_{k+1}$,$z_{k+1}$をそれぞれ$x_k$,$y_k$,$z_k$を用いて表せ。
(3)$\displaystyle\lim_{k\to\infty}x_k$, $\displaystyle\lim_{k\to\infty}y_k$, $\displaystyle\lim_{k\to\infty}z_k$を求めよ。
この動画を見る 

富山県立大 3次方程式 解が無理数である証明 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#恒等式・等式・不等式の証明#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#富山県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3-x^2+2x-1=0$
実数解は無理数であることを示せ

出典:富山県立大学 過去問
この動画を見る 

大学入試問題#111 早稲田大学(2021) 次数下げ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\alpha=\displaystyle \frac{-1+\sqrt{ 5 }i}{2}$
$\beta=\displaystyle \frac{-1-\sqrt{ 5 }i}{2}$のとき
$\alpha^4+\beta^4$の値を求めよ。

出典:2021年早稲田大学 入試問題
この動画を見る 

大学入試問題#83 京都大学(2012) 平面ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$\triangle OAB$において
$OA=3,\ OB=2$
$\angle AOB=60^{ \circ }$
$\triangle OAB$の垂心を$H$とする。
$\overrightarrow{ OH }$を$\overrightarrow{ OA }$と$\overrightarrow{ OB }$で表せ。

出典:2021年京都大学 入試問題
この動画を見る 
PAGE TOP