神戸大 三次方程式の解 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

神戸大 三次方程式の解 Mathematics Japanese university entrance exam

問題文全文(内容文):
$f(x)=x^3-3x+1,g(x)=x^2-2$
方程式$f(x)=0$について以下を示せ
(1)$f(x)=0$は絶対値2未満の相違3実根をもつ
(2)$a$が$f(x)=0$の解なら$g(a)$も$f(x)=0$の解である
(3)$f(x)=0$の解を小さい順に$a_{1} \lt a_{2} \lt a_{3}$とすると$g(a_{1})=a_{3},g(a_{2})=a_{1},g(a_{3})=a_{2}$

出典:神戸大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-3x+1,g(x)=x^2-2$
方程式$f(x)=0$について以下を示せ
(1)$f(x)=0$は絶対値2未満の相違3実根をもつ
(2)$a$が$f(x)=0$の解なら$g(a)$も$f(x)=0$の解である
(3)$f(x)=0$の解を小さい順に$a_{1} \lt a_{2} \lt a_{3}$とすると$g(a_{1})=a_{3},g(a_{2})=a_{1},g(a_{3})=a_{2}$

出典:神戸大学 過去問
投稿日:2019.01.11

<関連動画>

複素数とは?名古屋工業大

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(\sqrt3+i)^m=(1+i)^n$,最小の自然数$m,n$を求めよ.

1967名古屋工大過去問

この動画を見る 

方程式を解け。

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2^{x^{2}}=2x^2$を解け
(x:実数)
この動画を見る 

4次方程式の解でできた式の値

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^4-x^3-x^2-x+3=0$の4つの解を$\alpha,\beta,\delta,\zeta$とする.
$(\alpha^3-1)(\beta^3-1)(\delta^3-1)(\zeta^3-1)$の値を求めよ.
この動画を見る 

式の値

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x+\dfrac{1}{x}=\sqrt3$のとき,$x^{18}+x^{12}+x^6+1$の値を求めよ.
この動画を見る 

愛があれば解決する。愛はなくても問題ない

アイキャッチ画像
単元: #数Ⅱ#式と証明#複素数と方程式#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+2\sqrt{3}y=\dfrac{x}{x^2+y^2} \\
2\sqrt{3}x-2y=\dfrac{y}{x^2+y^2}
\end{array}
\right.
\end{eqnarray}$
連立方程式を解け.
この動画を見る 
PAGE TOP