連立2元4次方程式 - 質問解決D.B.(データベース)

連立2元4次方程式

問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
x+y=1 \\
x^4+y^4=881
\end{array}
\right.
\end{eqnarray}$
これを解け.
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \begin{eqnarray}
\left\{
\begin{array}{l}
x+y=1 \\
x^4+y^4=881
\end{array}
\right.
\end{eqnarray}$
これを解け.
投稿日:2022.10.17

<関連動画>

熊本大(医)整数・数列・二次関数

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#2次関数#整数の性質#数列#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$7^n$の一の位を$a_n(n$自然数$)$

(1)
$a_{99}$


(2)
$-n^2+2na_n$の最大値とそのときの$n$

出典:1989年熊本大学医学部 過去問
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第4問(1)〜条件の否定

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$(1)関数$f(x)$に対する以下の条件(P)を考える。
$(P): f(x) \gt 3$を満たす5以上の自然数nが存在する。
条件(P)の否定として正しいものを以下の選択肢からすべて選べ。
$(\textrm{a})f(n) \leqq 3$を満たす5以上の自然数nが存在する。
$(\textrm{b})f(n) \gt 3$を満たす5未満の自然数nが存在する。
$(\textrm{c})f(n) \leqq 3$を満たす5未満の自然数nが存在する。
$(\textrm{d})n$が5以上の自然数ならば$f(n) \leqq 3$が成り立つ。
$(\textrm{e})n$が5未満の自然数ならば$f(n) \leqq 3$が成り立つ。
$(\textrm{f})n$が5未満の自然数ならば$f(n) \gt 3$が成り立つ。
$(\textrm{g})f(n) \gt 3$が5以上の全ての自然数nに対して成り立つ。
$(\textrm{h})f(n) \leqq 3$が5以上の全ての自然数nに対して成り立つ。
$(\textrm{i})f(n) \leqq 3$が5未満の全ての自然数nに対して成り立つ。

2021上智大学文系過去問
この動画を見る 

福田のわかった数学〜高校1年生034〜背理法(2)

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 背理法(2)
$\sqrt2,\sqrt[3]3$が無理数であることを既知として次を証明せよ。
$p,q,\sqrt2p+\sqrt[3]3q$が全て有理数 $\Rightarrow p=q=0$
この動画を見る 

【三角比の応用を整理!】三角比を使う定理の使い方を解説〔高校数学 数学〕

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
三角比を使う定理の使い方 解説動画です
この動画を見る 

【この一本でルートのルール全部確認!!】平方根の基礎全まとめ(平方根とは・有理化・乗法除法・加法減法 )〔現役講師解説、中学数学・高校数学〕

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):

次の数の平方根は?

①$4$

②$0.01$

③$3$

④$0.2$

平方根を使わずに表しなさい。

①$\sqrt4$

②$-\sqrt{25}$

③$(\sqrt3)^2$

④$(-\sqrt5)^2$

次の計算をせよ。

①$\sqrt3\times \sqrt2$

②$\sqrt5 \times \sqrt7 $

③$\sqrt6 \div \sqrt3$

④$\sqrt{45} \div \sqrt5$

$a\sqrt b$の形にせよ。

①$\sqrt{20}$

②$\sqrt{48}$

有理化しなさい。

①$\dfrac{3}{7}$

②$\dfrac{1}{12}$

次の計算をしなさい。

①$2\sqrt2 +3\sqrt2$

②$4\sqrt3-2\sqrt3$

③$2\sqrt3+2\sqrt2+4\sqrt3-5\sqrt2$

④$\sqrt{28}-3\sqrt7$

⑤$\sqrt2+\sqrt8-6\sqrt2$
    
この動画を見る 
PAGE TOP