大学入試問題#18 東北大学(2020) 数列 - 質問解決D.B.(データベース)

大学入試問題#18 東北大学(2020) 数列

問題文全文(内容文):
$a_1=1,\ a_2=3$
$a_{n+2}a_n=2a_{n+1}^2$のとき
一般項$a_n$を求めよ。

出典:2020年東北大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$a_1=1,\ a_2=3$
$a_{n+2}a_n=2a_{n+1}^2$のとき
一般項$a_n$を求めよ。

出典:2020年東北大学 入試問題
投稿日:2021.09.26

<関連動画>

大学入試問題#753「普通に超良問」 東京理科大学理工学部(1999) #積分方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(2x)=\displaystyle \int_{0}^{\pi} f(t) dt+K\ x\ \cos\ x$
$f'(\pi)=\displaystyle \frac{\pi}{2}$
を満たすとき、定数$K$の値と、関数$f(x)$を求めよ。

出典:1999年東京理科大学理工学部 入試問題
この動画を見る 

n進法の理解が深まる問題!2通りで解説!【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
10進法で表された6.75を2進法で表せ。
また、この数と、2進法で表された数101.101との積として与えられる数を2進法および4進法で表せ

京都大過去問
この動画を見る 

慶応義塾大 3次方程式(補)共役の複素数は解となることを示せ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a$実数
$x^3+ax^2-3x+10=0$の1つの解は$x=2-i$
$a$の値と実数解を求めよ。

※$n$次方程式$(n \geqq 4)$で$m+ni(n \neq 0)$が解なら$m-ni$も解であることを示せ

出典:2009年慶應義塾 過去問
この動画を見る 

福田の数学〜青山学院大学2023年理工学部第5問〜定積分で定義された数列と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#積分とその応用#数列の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ $a_n$=$\displaystyle\frac{1}{n!}\int_1^e(\log x)^ndx$ ($n$=1,2,3,...)とおく。
(1)$a_1$を求めよ。
(2)不等式0≦$a_n$≦$\frac{e-1}{n!}$ が成り立つことを示せ。
(3)$n$≧2のとき、$a_n$=$\displaystyle\frac{e}{n!}$-$a_{n-1}$ であることを示せ。
(4)$\displaystyle\lim_{n \to \infty}\sum_{k=2}^n\frac{(-1)^k}{k!}$ を求めよ。
この動画を見る 

大学入試問題#318 立教大学 改 (2021) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{e}\displaystyle \frac{(log\ x)^4}{x^2}dx$

出典:2021年立教大学 入試問題
この動画を見る 
PAGE TOP