問題文全文(内容文):
${\Large\boxed{6}}$
F(x)は実数を係数とするxの3次式で、x^3の項の係数は1であり、$y=F(x)$で
定まる曲線をCとする。$\alpha \lt \beta$を満たす実数$\alpha,\ \beta$に対して、C上の点A$(\alpha,F(\alpha))$
におけるCの接線を$L_{\alpha}$とするとき、Cと$L_{\alpha}$とのA以外の共有点が$B(\beta,F(\beta))$
であるとする。さらに、BにおけるCの接線を$L_{\beta}$とのB以外の共有点を$(\gamma,F(\gamma))$
とする。
(1)接線$L_{\alpha}$の方程式を$y=l_{\alpha}(x)$とし、$G(x)=F(x)-l_{\alpha}(x)$とおく。さらに、
曲線$y=G(x)$上の点$(\beta,G(\beta))$における接線の方程式を$y=m(x)$とする。$G(x)$
および$m(x)$を、それぞれ$\alpha,\beta$を用いて因数分解された形に表せ。必要ならば
xの整式で表される関数$p(x),q(x)$とそれらの導関数に関して成り立つ公式
$\left\{p(x)q(x)\right\}'=p'(x)q(x)+p(x)q'(x)$
を用いてもよい。
(2)接線$L_{\beta}$の方程式は(1)で定めた$l_{\alpha}(x),\ m(x)$を用いて、$y=l_{\alpha}(x)+ m(x)$で
与えられることを示せ。さらに、$\gamma$を$\alpha,\beta$を用いて表せ。
(3)曲線Cおよび$L_{\beta}$で囲まれた図形の面積を$S$とする。$S$を$\alpha,\beta$を用いて表せ。
さらに$\alpha,\beta$が$-1 \lt \alpha \lt 0$かつ$1 \lt \beta \lt 2$を満たすとき、$S$の取り得る値の
範囲を求めよ。必要ならば$r \lt s$を満たす実数$r,s$に対して成り立つ公式
$\int_r^s(x-r)(x-s)^2dx=\frac{1}{12}(s-r)^4$
を用いてもよい。
2021慶應義塾大学経済学部過去問
${\Large\boxed{6}}$
F(x)は実数を係数とするxの3次式で、x^3の項の係数は1であり、$y=F(x)$で
定まる曲線をCとする。$\alpha \lt \beta$を満たす実数$\alpha,\ \beta$に対して、C上の点A$(\alpha,F(\alpha))$
におけるCの接線を$L_{\alpha}$とするとき、Cと$L_{\alpha}$とのA以外の共有点が$B(\beta,F(\beta))$
であるとする。さらに、BにおけるCの接線を$L_{\beta}$とのB以外の共有点を$(\gamma,F(\gamma))$
とする。
(1)接線$L_{\alpha}$の方程式を$y=l_{\alpha}(x)$とし、$G(x)=F(x)-l_{\alpha}(x)$とおく。さらに、
曲線$y=G(x)$上の点$(\beta,G(\beta))$における接線の方程式を$y=m(x)$とする。$G(x)$
および$m(x)$を、それぞれ$\alpha,\beta$を用いて因数分解された形に表せ。必要ならば
xの整式で表される関数$p(x),q(x)$とそれらの導関数に関して成り立つ公式
$\left\{p(x)q(x)\right\}'=p'(x)q(x)+p(x)q'(x)$
を用いてもよい。
(2)接線$L_{\beta}$の方程式は(1)で定めた$l_{\alpha}(x),\ m(x)$を用いて、$y=l_{\alpha}(x)+ m(x)$で
与えられることを示せ。さらに、$\gamma$を$\alpha,\beta$を用いて表せ。
(3)曲線Cおよび$L_{\beta}$で囲まれた図形の面積を$S$とする。$S$を$\alpha,\beta$を用いて表せ。
さらに$\alpha,\beta$が$-1 \lt \alpha \lt 0$かつ$1 \lt \beta \lt 2$を満たすとき、$S$の取り得る値の
範囲を求めよ。必要ならば$r \lt s$を満たす実数$r,s$に対して成り立つ公式
$\int_r^s(x-r)(x-s)^2dx=\frac{1}{12}(s-r)^4$
を用いてもよい。
2021慶應義塾大学経済学部過去問
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{6}}$
F(x)は実数を係数とするxの3次式で、x^3の項の係数は1であり、$y=F(x)$で
定まる曲線をCとする。$\alpha \lt \beta$を満たす実数$\alpha,\ \beta$に対して、C上の点A$(\alpha,F(\alpha))$
におけるCの接線を$L_{\alpha}$とするとき、Cと$L_{\alpha}$とのA以外の共有点が$B(\beta,F(\beta))$
であるとする。さらに、BにおけるCの接線を$L_{\beta}$とのB以外の共有点を$(\gamma,F(\gamma))$
とする。
(1)接線$L_{\alpha}$の方程式を$y=l_{\alpha}(x)$とし、$G(x)=F(x)-l_{\alpha}(x)$とおく。さらに、
曲線$y=G(x)$上の点$(\beta,G(\beta))$における接線の方程式を$y=m(x)$とする。$G(x)$
および$m(x)$を、それぞれ$\alpha,\beta$を用いて因数分解された形に表せ。必要ならば
xの整式で表される関数$p(x),q(x)$とそれらの導関数に関して成り立つ公式
$\left\{p(x)q(x)\right\}'=p'(x)q(x)+p(x)q'(x)$
を用いてもよい。
(2)接線$L_{\beta}$の方程式は(1)で定めた$l_{\alpha}(x),\ m(x)$を用いて、$y=l_{\alpha}(x)+ m(x)$で
与えられることを示せ。さらに、$\gamma$を$\alpha,\beta$を用いて表せ。
(3)曲線Cおよび$L_{\beta}$で囲まれた図形の面積を$S$とする。$S$を$\alpha,\beta$を用いて表せ。
さらに$\alpha,\beta$が$-1 \lt \alpha \lt 0$かつ$1 \lt \beta \lt 2$を満たすとき、$S$の取り得る値の
範囲を求めよ。必要ならば$r \lt s$を満たす実数$r,s$に対して成り立つ公式
$\int_r^s(x-r)(x-s)^2dx=\frac{1}{12}(s-r)^4$
を用いてもよい。
2021慶應義塾大学経済学部過去問
${\Large\boxed{6}}$
F(x)は実数を係数とするxの3次式で、x^3の項の係数は1であり、$y=F(x)$で
定まる曲線をCとする。$\alpha \lt \beta$を満たす実数$\alpha,\ \beta$に対して、C上の点A$(\alpha,F(\alpha))$
におけるCの接線を$L_{\alpha}$とするとき、Cと$L_{\alpha}$とのA以外の共有点が$B(\beta,F(\beta))$
であるとする。さらに、BにおけるCの接線を$L_{\beta}$とのB以外の共有点を$(\gamma,F(\gamma))$
とする。
(1)接線$L_{\alpha}$の方程式を$y=l_{\alpha}(x)$とし、$G(x)=F(x)-l_{\alpha}(x)$とおく。さらに、
曲線$y=G(x)$上の点$(\beta,G(\beta))$における接線の方程式を$y=m(x)$とする。$G(x)$
および$m(x)$を、それぞれ$\alpha,\beta$を用いて因数分解された形に表せ。必要ならば
xの整式で表される関数$p(x),q(x)$とそれらの導関数に関して成り立つ公式
$\left\{p(x)q(x)\right\}'=p'(x)q(x)+p(x)q'(x)$
を用いてもよい。
(2)接線$L_{\beta}$の方程式は(1)で定めた$l_{\alpha}(x),\ m(x)$を用いて、$y=l_{\alpha}(x)+ m(x)$で
与えられることを示せ。さらに、$\gamma$を$\alpha,\beta$を用いて表せ。
(3)曲線Cおよび$L_{\beta}$で囲まれた図形の面積を$S$とする。$S$を$\alpha,\beta$を用いて表せ。
さらに$\alpha,\beta$が$-1 \lt \alpha \lt 0$かつ$1 \lt \beta \lt 2$を満たすとき、$S$の取り得る値の
範囲を求めよ。必要ならば$r \lt s$を満たす実数$r,s$に対して成り立つ公式
$\int_r^s(x-r)(x-s)^2dx=\frac{1}{12}(s-r)^4$
を用いてもよい。
2021慶應義塾大学経済学部過去問
投稿日:2021.07.10