福田のわかった数学〜高校1年生073〜場合の数(12)組み分け - 質問解決D.B.(データベース)

福田のわかった数学〜高校1年生073〜場合の数(12)組み分け

問題文全文(内容文):
数学$\textrm{I}$ 場合の数(12) 組み分け
6個の玉を3個の箱に入れる方法は次の各場合に何通りあるか。
\begin{array}{|c|c|c|c|c|}
\hline
      & 玉に区別なし & 玉に区別なし & 玉に区別あり &玉に区別あり\\
      & 箱に区別なし & 箱に区別あり & 箱に区別なし &箱に区別あり\\
\hline
空箱可 & (1) & (3) & (5) & (7)\\
\hline
空箱不可 & (2) & (4) & (6) & (8)\\
\hline
\end{array}
\end{eqnarray}
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(12) 組み分け
6個の玉を3個の箱に入れる方法は次の各場合に何通りあるか。
\begin{array}{|c|c|c|c|c|}
\hline
      & 玉に区別なし & 玉に区別なし & 玉に区別あり &玉に区別あり\\
      & 箱に区別なし & 箱に区別あり & 箱に区別なし &箱に区別あり\\
\hline
空箱可 & (1) & (3) & (5) & (7)\\
\hline
空箱不可 & (2) & (4) & (6) & (8)\\
\hline
\end{array}
\end{eqnarray}
投稿日:2021.11.02

<関連動画>

部屋割り問題

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
5人をA,B,Cの3部屋に分けるのは何通り?ただし0人部屋は除外とする.
この動画を見る 

18兵庫県教員採用試験(数学:1-1 確率)

アイキャッチ画像
単元: #数Ⅰ#数A#場合の数と確率#確率
指導講師: ますただ
問題文全文(内容文):
1⃣-(1)
赤5コ、白7コが入った袋がある。
(1)同時に2コとるとき、玉の色が異なる確率を求めよ。
(2)1コとって、袋にもどさず2コ目をとる。
2コ目が白のとき、1コ目も白の確率を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年看護医療学部第2問(1)〜反復試行の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ (1)座標平面上を動く点Pが原点の位置がある。1個のさいころを投げて、1または2の
目が出たときには、Pはx軸の正の向きに1だけ進み、他の目が出たときには、
Pはy軸の正の向きに2だけ進むことにして、さいころを3回投げる。
点Pの座標が(2,2)である確率は$\boxed{\ \ ス\ \ }$であり、Pと原点との距離が3以上である
確率は$\boxed{\ \ セ\ \ }$である。Pと原点との距離が3以上という条件の下で、Pが座標軸上にない
条件付確率は$\boxed{\ \ ソ\ \ }$である。

2021慶應義塾大学看護医療学部過去問
この動画を見る 

福田の数学〜一橋大学2024年文系第5問〜円の中心を含む三角形になる確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ $n$を3以上の奇数とする。円に内接する正$n$角形の頂点から無作為に相異なる3点を選んだ時、その3点を頂点とする三角形の内部に円の中心が含まれる確率$p_n$を求めよ。
この動画を見る 

福田の数学〜上智大学2023年理工学部第1問(1)〜複素数平面と確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#複素数平面#確率#複素数平面#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (1)次の6つの複素数が1つずつ書かれた6枚のカードがある。
$\frac{1}{2}$, 1, 2, $\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}$, $\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}$, $\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}$
これらから無作為に3枚選び、カードに書かれた3つの複素数を掛けた値に対応する複素数平面上の点をPとする。
(i)点Pが虚軸上にある確率は$\displaystyle\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$である。
(ii)点Pの原点からの距離が1である確率は$\displaystyle\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$である。
この動画を見る 
PAGE TOP