西暦「2024」を含む入試予想問題(2)~全国入試問題解法 - 質問解決D.B.(データベース)

西暦「2024」を含む入試予想問題(2)~全国入試問題解法

問題文全文(内容文):
$ \sqrt{2024}$の$ \color{red}{整数部分をa,小数部分をb}$とするとき,
$ \color{orange}{\dfrac{a}{b}}$の値は$ \Box $である.

$ \Box $を解け.

入試予想問題(2)
単元: #数学(中学生)#高校入試過去問(数学)#受験年度の数字を含む問題
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \sqrt{2024}$の$ \color{red}{整数部分をa,小数部分をb}$とするとき,
$ \color{orange}{\dfrac{a}{b}}$の値は$ \Box $である.

$ \Box $を解け.

入試予想問題(2)
投稿日:2023.12.26

<関連動画>

30秒で理解する図形の面積から文字式の解を求める手法~全国入試問題解法 #Shorts #数学 #高校入試

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$30ab+4bc-9a^2-23b^2+2c^2$の値を求めなさい.

名古屋国際高校過去問
この動画を見る 

高等学校入学試験問題予想:日本大学第二高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#高校入試過去問(数学)#日本大学第二高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試予想問題~日大第二高校
・$\displaystyle \frac{3}{2} \div (-\displaystyle \frac{1}{2})^2+(-3)^2 \times (-\displaystyle \frac{1}{4})^3 \div 0.75^2+(0.5-1)^2$
を計算せよ。

・$a^2+aℓ-3ac-2ℓ^2+3ℓc $を因数分解せよ。

・$\sqrt{ \displaystyle \frac{72}{n} } $が自然数となるような自然数$n$の個数を求めよ。

・2人でじゃんけんをしたとき、2人の出した 手の指の本数の合計が奇数になる確率 を求めよ。
(グー:0,チョキ:2、パー:5)

1辺の長さが4の立方体 点P:辺EFを1:3
点Q:辺BCの中点

(1)~(3)を求めよ。
(1)PからEGに引いた垂線の長さ?

(2)QからEGに引いた重線の長さ?

(3)線分EGの中点をMとする
線分PMと線分QMの長さの和?
※図は動画内参照
この動画を見る 

コメント欄が荒れそうな解き方してしまった🙇‍♂️中学受験の知識だけでは解けません。東北学院

アイキャッチ画像
単元: #数学(中学生)#中3数学#円#三平方の定理#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
半径=2
斜線部の面積は?
*図は動画内参照

東北学院高等学校
この動画を見る 

高等学校入学試験予想問題:秋田県公立高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#空間図形#相似な図形#文章題#文章題その他#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$
(1)$\dfrac{15}{2}\times \left(-\dfrac{4}{5}\right)$
(2)$ 10a-(6a+8)$
(3)$ 27ab^2\div 9ab $
(4)二次方程式$ x^2-3x+1=0$を解け.

$ \boxed{2}$
(1)底面が1辺6cmの正方形,体積$ 96cm^3$の四角錐の高さは?
(2)$ 4 \lt \sqrt a \lt \dfrac{13}{3}$に当てはまるaの値をすべて求めよ.
(3)$ \ell \parallel m $のとき,$ \angle x $は?

$ \boxed{3}$
n番目の白タイルの枚数をnの式で表せ.
この動画を見る 

難易度MAX 2021ラ・サール最後の問題 D

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
半径1の2つの円が重ならないように正方形内を動く。
円の中心P,Qが存在しうる範囲の面積を求めよ。
*図は動画内参照

2021ラ・サール高等学校
この動画を見る 
PAGE TOP