ただの連立二元三次方程式 - 質問解決D.B.(データベース)

ただの連立二元三次方程式

問題文全文(内容文):
x,yは実数
\begin{eqnarray}
\left\{
\begin{array}{l}
(x + y)(x^2+y^2) = 520 \\
(x-y)(x^2-y^2) = 40
\end{array}
\right.
\end{eqnarray}
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
x,yは実数
\begin{eqnarray}
\left\{
\begin{array}{l}
(x + y)(x^2+y^2) = 520 \\
(x-y)(x^2-y^2) = 40
\end{array}
\right.
\end{eqnarray}
投稿日:2023.07.20

<関連動画>

分母の有理化 愛知大

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
分母を有理化せよ
$\frac{1}{\sqrt2+\sqrt3+2+\sqrt6}$

愛知大学
この動画を見る 

福田の一夜漬け数学〜2次関数の最大最小(3)区間の動く最大最小〜高校1年生

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a \gt 0$とする。$f(x)=x^2-4x+5$ $(0 \leqq x \leqq a)$について、
(1)最小値$m(a)$を求めよ。  (2)最大値$M(a)$を求めよ。


$f(x)=-x^2+4x-1 (a \leqq x \leqq a+1)$について
(1)最大値$M(a)$を求めよ。  (2)最小値$m(a)$を求めよ。
この動画を見る 

【短時間でマスター!!】連立2次不等式の書き方を解説!〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2 + 3x + 2 > 0 \\
x^2 + 2x - 3 < 0
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

2024年共通テスト徹底解説〜数学ⅠA第2問(1)2次関数〜福田の入試問題解説

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
共通テスト2024の数学ⅠA第2問(2)2次関数を徹底解説します

2024共通テスト過去問
この動画を見る 

平方根の計算 愛知県令和4年度 2022 入試問題100題解説87問目!

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$(\sqrt 5 - \sqrt 3 )(\sqrt {20} + \sqrt {12} )$

2022愛知県
この動画を見る 
PAGE TOP