福田のわかった数学〜高校3年生理系077〜極値(1)極大値をもつ条件 - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系077〜極値(1)極大値をもつ条件

問題文全文(内容文):
数学$\textrm{III}$ 極値(1)
$f(x)=\frac{a-\cos x}{a+\sin x}\ が0 \lt x \lt \frac{\pi}{2}$の範囲で
極大値をもつように定数aの値の範囲を定めよ。
単元: #数Ⅱ#三角関数#三角関数とグラフ#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極値(1)
$f(x)=\frac{a-\cos x}{a+\sin x}\ が0 \lt x \lt \frac{\pi}{2}$の範囲で
極大値をもつように定数aの値の範囲を定めよ。
投稿日:2021.09.23

<関連動画>

【高校数学】三角関数の性質の裏技~先生には怒られるかもしれません~ 4-3.5【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
三角関数の性質の裏技紹介動画です
この動画を見る 

【数学II】三角関数_これで共テ瞬殺!【三角関数のイメージ】【共通テスト】

アイキャッチ画像
単元: #三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
(1)
$0^{ \circ } \lt \theta \lt 180^{ \circ }$
$\tan \theta =-2$
$\sin \theta,\cos \theta$は?

(2)
$0 \leqq \theta \lt 2 \pi$
$\cos \theta \lt \displaystyle \frac{\sqrt{ 3 }}{2}$を解け

(3)
$0 \lt \theta \leqq 2 \pi$
$\sin \theta \geqq \displaystyle \frac{1}{2}$を解け

(4)
$0 \leqq \theta \lt 2 \pi$
$\sin \theta + \sqrt{ 3 } \cos \theta =\sqrt{ 2 }$を解け

(5)
$0 \leqq x \leqq \pi$とする
$y=2 \sin 2x-2(\sin x- \cos x)+1$
のとり得る値の範囲は?

(6)
$f(x)=\sin x - \cos 2x$の
$0 \leqq x \leqq \pi$における
max、minを求めよ
この動画を見る 

【高校数学】 数Ⅱ-96 三角関数のグラフ②

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の関数のグラフと周期を書こう。

①$y=2\sin \theta$

②$y=\cos\theta+1$

③$y=\cos (\theta + \displaystyle \frac{π}{ 6 })$
この動画を見る 

【数Ⅱ】三角関数と方程式 3 三角関数の2次方程式【文字の置き換えをしたら範囲をチェック!】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$(1) \sin2x=\cos x(0 \leqq x \lt 2\pi)$
$(2)\sin x+\sqrt3 \cos x=1(0 \leqq x \lt 2\pi)$
$(3)2\sin^2x+7\sin x+3=0(0 \leqq x \lt 2\pi)$
$(4)\sin^2x+\sin x \cos x-1=0(0 \leqq x \lt 2\pi)$
$(5)\sin x+\cos x+2\sin x \cos x-=0(0 \leqq x \lt 2\pi)$
この動画を見る 

福田の1.5倍速演習〜合格する重要問題048〜早稲田大学2019年度商学部第1問(1)〜2変数の三角関数の最大最小問題

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)$\alpha,\beta$を実数とする。
$2\cos\alpha\sin\beta+3\sin\alpha\sin\beta+4\cos\beta$
の最小値は$\boxed{ア}$である。

2019早稲田大学商学部過去問
この動画を見る 
PAGE TOP