08三重県教員採用試験(数学:8番 区分求積法) - 質問解決D.B.(データベース)

08三重県教員採用試験(数学:8番 区分求積法)

問題文全文(内容文):
$\displaystyle \lim_{x\to\infty}\left(\dfrac{1}{\sqrt{n(n+1)}}+\dfrac{1}{\sqrt{n(n+2)}}+・・・・・・\dfrac{1}{\sqrt{n(n+n)}}\right)$
を計算せよ.
単元: #数Ⅱ#微分法と積分法#その他#不定積分・定積分#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{x\to\infty}\left(\dfrac{1}{\sqrt{n(n+1)}}+\dfrac{1}{\sqrt{n(n+2)}}+・・・・・・\dfrac{1}{\sqrt{n(n+n)}}\right)$
を計算せよ.
投稿日:2021.07.26

<関連動画>

工夫が大事!積分と確率の融合問題【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
サイコロを3回投げて出た目を順に$a,b,c$とするとき,

$ \displaystyle \int_{a-3}^{a+3} (x-b)(x-c)dx=0 $

となる確率を求めよ。

一橋大過去問
この動画を見る 

大学入試問題#819「楽に計算したい」 #奈良教育大学(2009) #積分方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#奈良教育大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
次の等式を満たす関数$f(x)$を求めよ。
$f(x)=\cos\ x+2\displaystyle \int_{0}^{\frac{\pi}{2}} tf(t) \sin\ t\ dt$

出典:2009年奈良教育大学
この動画を見る 

福田の数学〜中央大学2021年経済学部第1問(6)〜定積分で表された関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(6)次の2つの等式を満たす関数f(x)を求めよ。
$f(0)=-\frac{1}{3}, f'(x)=2x+\int_0^1f(t)dt$

2021中央大学経済学部過去問
この動画を見る 

琉球大 積分 計算の工夫

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=2x^3-3x^2-6x+7$
$f(x)$は$\alpha,\beta(\alpha \lt \beta)$で極値をもつ.
$f(x)$と$x$軸で囲まれた領域で$\alpha\leqq x\leqq \beta$の部分の面積を求めよ.

2021琉球大過去問
この動画を見る 

【数Ⅱ】【微分法と積分法】定積分と恒等式1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$f(x) = ax^2 + bx + 1$ とする。
任意の1次関数 $g(x)$ に対して、常に
$\int_{0}^{1} f(x) g(x) \,dx = 0$
が成り立つとき、定数 $a, b$ の値を求めよ。
この動画を見る 
PAGE TOP