【高校数学】 数Ⅰ-80 三角比⑤ - 質問解決D.B.(データベース)

【高校数学】  数Ⅰ-80  三角比⑤

問題文全文(内容文):
$0° \leqq \theta \leqq 90°$のとき
$\sin (90°+\theta)=$①____
$\cos(90°+\theta)=$②____
$\tan(90°+\theta)=$③____


$0° \leqq \theta \leqq 180°$とき
$\sin (180°-\theta)=$④____
$\cos(180°-\theta)=$⑤____
$\tan(180°-\theta)=$⑥____
⑦$\sin105°-\cos150°+\sin120°+\cos165°$の値は?
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$0° \leqq \theta \leqq 90°$のとき
$\sin (90°+\theta)=$①____
$\cos(90°+\theta)=$②____
$\tan(90°+\theta)=$③____


$0° \leqq \theta \leqq 180°$とき
$\sin (180°-\theta)=$④____
$\cos(180°-\theta)=$⑤____
$\tan(180°-\theta)=$⑥____
⑦$\sin105°-\cos150°+\sin120°+\cos165°$の値は?
投稿日:2014.10.16

<関連動画>

慶應(医)愛媛大 判別式 整数 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
愛媛大学過去問題
$3x^2+y^2+5z^2-2yz-12=0$
これを満たす整数(x,y,z)

慶応義塾大学過去問題
$\{ x^2+2(a+b)x+a^3 \}$ $\{ x^2+(a^2-ab+b^2)x+b^3 \} = 0$
が実根をもつことを証明。
この動画を見る 

福田の数学〜立教大学2023年経済学部第1問(6)〜関数方程式

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (6)2次式$f(x)$が$f(f(x))$=$f(x)^2$+1 を満たすとき$f(x)$=$\boxed{\ \ カ\ \ }$である。
この動画を見る 

よく出る問題!放物線と直線が接するということは?【数学 入試問題】【京都大学】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#図形と方程式#点と直線#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
放物線$y=ax^2+bx+c$が3直線$y=x,y=2x-1,y=3x-3$のすべてと接するとき、$a,b,c$の値を求めよ。

京都大過去問
この動画を見る 

千葉大 2次方程式の解 整数問題

アイキャッチ画像
単元: #数Ⅰ#数A#2次関数#2次関数とグラフ#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P$素数
$Px^2+(5-P^2)x-3P=0$が整数解をもつ$P$の値を求めよ

出典:2003年千葉大学 過去問
この動画を見る 

数学「大学入試良問集」【1−2 数と式】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#数学(高校生)#関西大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$x,y$を実数とする。
下の(1)、(2)の文中の□にあてはまるものを、次の(ア)、(イ)、(ウ)、(エ)の中から選べ。
 (ア)必要条件ではあるが、十分条件ではない
 (イ)十分条件ではあるが、必要条件ではない
 (ウ)必要十分条件である
 (エ)必要条件でも、十分条件でもない

(1)$x^2+y^2 \lt 1$は、$-1 \lt x \lt $であるための□。
(2)$-1 \lt x \lt 1$かつ$-1 \lt y \lt 1$は$x^2+y^2 \lt 1$であるための□。
この動画を見る 
PAGE TOP