6乗根の計算 どってことないよ - 質問解決D.B.(データベース)

6乗根の計算 どってことないよ

問題文全文(内容文):
これを解け.

$\sqrt[6]{26+15\sqrt3}-\sqrt[6]{26-15\sqrt3}$
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.

$\sqrt[6]{26+15\sqrt3}-\sqrt[6]{26-15\sqrt3}$
投稿日:2021.05.09

<関連動画>

福田の数学〜上智大学2022年理工学部第1問(1)〜集合と論理

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)x,yを実数とする。次の条件を考える。
$p:xy$が無理数である.
$q:x,y$がともに無理数である.
$r:x,y$の少なくとも一方が無理数である.
$(\textrm{i})$以下から真の命題をすべて選べ。
$(\textrm{a})p \Rightarrow q\ \ \ (\textrm{b})p \Rightarrow r\ \ \ (\textrm{c})q \Rightarrow p\ \ \ (\textrm{d})q \Rightarrow r\ \ \ (\textrm{e})r \Rightarrow p\ \ \ (\textrm{f})r \Rightarrow q\ \ \ \\
(\textrm{ii})x,y$が命題「$p \Rightarrow q$」の判例であるための必要十分条件を、すべて選べ。
$(\textrm{a})$「$xy$が無理数」かつ「x,yが共に有理数」である。
$(\textrm{b})$「$xy$が有理数」かつ「x,yが共に有理数」である。
$(\textrm{c})$「$xy$が有理数」かつ「xが有理数、または、yが有理数」である。
$(\textrm{d})$「$xy$が無理数」かつ「xが有理数、または、yが有理数」である。
$(\textrm{e})$「$xy$が無理数、かつxが有理数」または「xyが無理数、かつ、yが有
理数」である。
$(\textrm{f})$「$xy$が無理数、かつxが有理数」または「xyが有理数、かつ、yが有
理数」である。

2022上智大学理工学部過去問
この動画を見る 

図形と計量 円に内接する四角形の面積【烈's study!がていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#数A#図形の性質#図形と計量#周角と円に内接する四角形・円と接線・接弦定理#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のような四角形ABCDの面積を求めよ。
(1)円に内接し、$AB=4、BC=3、CD=1、\angle B=60°$
(2)円に内接し、$AB=1、BC=2\sqrt2、CD=\sqrt2、\angle B=45°$
この動画を見る 

東工大 二次方程式と四次方程式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#複素数と方程式#2次方程式と2次不等式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^2+2x+a$
$f(x)=0$が相違なる実根をもち、$f(f(x))=0$が重解$\gamma$をもつ。
$\gamma,a$の値を求めよ。

出典:東京工業大学 過去問
この動画を見る 

根号を含んだ不等式の証明

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a>0,b>0$のとき
$3 \sqrt a + 2 \sqrt b > \sqrt {9a+4b}$
を示せ
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第1問(1)〜素因数分解と変数の値

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)整式X=6$a^3bc$+11$a^2b^2c$+3$ab^3c$がある。
(i)Xを因数分解するとX=$\boxed{\ \ ア\ \ }$である。
(ii)X=6270 を満たす(a,b,c)の組を全て求めると、(a,b,c)=$\boxed{\ \ イ\ \ }$である。ただし、a,b,cはそれぞれ2以上の整数とする。

2023慶應義塾大学薬学部過去問
この動画を見る 
PAGE TOP