二次曲線:東京~全国入試問題解法 - 質問解決D.B.(データベース)

二次曲線:東京~全国入試問題解法

問題文全文(内容文):
入試問題 東京

【別解付き!】
$x^2-xy+y^2=3$
の囲む面積を求めよ。
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 東京

【別解付き!】
$x^2-xy+y^2=3$
の囲む面積を求めよ。
投稿日:2021.02.23

<関連動画>

【高校数学】数Ⅲ-36 2次曲線と直線②

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の2次曲線の与えられた点における接線の方程式を求めよ.

①$y^2=-4x, \\\ (-1,2)$

②$\dfrac{x^2}{3}+\dfrac{y^2}{6}=1,\\\ (1,2)$
この動画を見る 

数学どうにかしたい人へ

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#図形の性質#式と証明#複素数と方程式#平面上のベクトル#空間ベクトル#平面上の曲線#複素数平面#図形と計量#データの分析#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#集合と命題(集合・命題と条件・背理法)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#データの分析#整数の性質#場合の数#確率#三角形の辺の比(内分・外分・二等分線)#内心・外心・重心とチェバ・メネラウス#周角と円に内接する四角形・円と接線・接弦定理#方べきの定理と2つの円の関係#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#図形と方程式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#円と方程式#軌跡と領域#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数列#確率分布と統計的な推測#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#数列とその和(等差・等比・階差・Σ)#漸化式#数学的帰納法#確率分布#統計的な推測#関数と極限#微分とその応用#積分とその応用#2次曲線#複素数平面#図形への応用#関数(分数関数・無理関数・逆関数と合成関数)#数列の極限#関数の極限#微分法#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#不定積分#定積分#面積・体積・長さ・速度#空間における垂直と平行と多面体(オイラーの法則)#不定積分・定積分#面積、体積#媒介変数表示と極座標#速度と近似式#数学(高校生)#数B#数C#数Ⅲ
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
数学が共通テストのみの人の勉強法紹介動画です
この動画を見る 

【高校数学】数Ⅲ-33 2次曲線の平行移動②

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の2次曲線の焦点を求めよ.

①楕円$4x^2+9y^2=24x$

②放物線$y^2-2y+8x+9=0$

③双曲線$9x^2-4y^2-18x+16y-43=0$
この動画を見る 

重積分⑦-2【極座標による変数変換】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #大学入試過去問(数学)#数学検定・数学甲子園・数学オリンピック等#平面上の曲線#積分とその応用#2次曲線#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学検定#数学検定1級#数学(高校生)#数C#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
$x^2+y^2+z^2=4a^2$ , $z \geqq 0$
$(x-a)^2+y^2=a^2$ , $z \geqq 0$
xy平面 (a>0)で囲まれた体積Vを求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年医学部第3問〜見上げる角が等しい点の軌跡と2次曲線

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#軌跡と領域#2次曲線#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$
水平な平面上の異なる2点${\rm A(0,1),Q}(x,y)$にそれぞれ高さ$h \gt 0,g \gt 0$の塔が平面に垂直に立っている。この平面上にあって$\rm A,Q$とは異なる点$\rm P$から2つの塔の先端を見上げる角度が等しくなる状況を考える。ただし、$h \neq g$とする。
(1)点$\rm Q$の座標が$ (t,1)$ (ただし$t \gt 0$)のとき、2つの塔を見上げる角度が等しくなるような点$\rm P$は、中心の座標が($\boxed{\ \ (あ)\ \ },\boxed{\ \ (い)\ \ }$)、半径が$\boxed{\ \ (う)\ \ }$の円周上にある。
(2)2つの塔を見上げる角度が等しくなるような点$\rm P$のうち、$y$軸上にあるものがただ1つあるとする。このとき$h$と$g$の間には不等式$\boxed{\ \ (え)\ \ }$が成り立ち、点$\textrm{Q}(x,y)$は2直線$y=\boxed{\ \ (お)\ \ }$, $y=\boxed{\ \ (か)\ \ }$のいずれかの上にある。
(3)2つの塔を見上げる角度が等しくなるような点$\rm P$のうち、$x$軸上にあるものがただ1つであるとする。このとき点$\textrm{Q}(x,y)$は方程式
$\boxed{\ \ (き)\ \ }x^2+\boxed{\ \ (く)\ \ }x+$$\boxed{\ \ (け)\ \ }y^2+$$\boxed{\ \ (こ)\ \ }y=1$
で表される2次曲線$C$の上にある。$C$が楕円であるのは$h$と$g$の間に不等式$\boxed{\ \ (さ)\ \ }$が成り立つときであり、そのとき$C$の2つの焦点の座標は$(\boxed{\ \ (し)\ \ },\boxed{\ \ (す)\ \ })$,$(\boxed{\ \ (せ)\ \ },\boxed{\ \ (そ)\ \ })$である。$\boxed{\ \ (さ)\ \ }$が成り立たないとき$C$は双曲線となり、その2つの焦点の座標は$(\boxed{\ \ (た)\ \ },\boxed{\ \ (ち)\ \ })$,$(\boxed{\ \ (つ)\ \ },\boxed{\ \ (て)\ \ })$である。さらに$\dfrac{h}{g}=\boxed{\ \ (と)\ \ }$のとき$C$は直角双曲線となる。

2021慶應義塾大学医学部過去問
この動画を見る 
PAGE TOP