問題文全文(内容文):
数学$\textrm{A}$ 確率(11) 反復試行(5)
格子点上を次の規則で点$\textrm{P}$が動く。
$(\textrm{a})$最初、点$\textrm{P}$は原点にある。
$(\textrm{b})$ある時刻で点$\textrm{P}$が(m,n)にあるとき、その1秒後の点$\textrm{P}$の位置は等確率で
$(m+1,n), (m,n+1), (m,n-1), (m-1,n)$である。
6秒後に点$\textrm{P}$が直線$y=x$上にある確率を求めよ。
東京大学過去問
数学$\textrm{A}$ 確率(11) 反復試行(5)
格子点上を次の規則で点$\textrm{P}$が動く。
$(\textrm{a})$最初、点$\textrm{P}$は原点にある。
$(\textrm{b})$ある時刻で点$\textrm{P}$が(m,n)にあるとき、その1秒後の点$\textrm{P}$の位置は等確率で
$(m+1,n), (m,n+1), (m,n-1), (m-1,n)$である。
6秒後に点$\textrm{P}$が直線$y=x$上にある確率を求めよ。
東京大学過去問
単元:
#数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
数学$\textrm{A}$ 確率(11) 反復試行(5)
格子点上を次の規則で点$\textrm{P}$が動く。
$(\textrm{a})$最初、点$\textrm{P}$は原点にある。
$(\textrm{b})$ある時刻で点$\textrm{P}$が(m,n)にあるとき、その1秒後の点$\textrm{P}$の位置は等確率で
$(m+1,n), (m,n+1), (m,n-1), (m-1,n)$である。
6秒後に点$\textrm{P}$が直線$y=x$上にある確率を求めよ。
東京大学過去問
数学$\textrm{A}$ 確率(11) 反復試行(5)
格子点上を次の規則で点$\textrm{P}$が動く。
$(\textrm{a})$最初、点$\textrm{P}$は原点にある。
$(\textrm{b})$ある時刻で点$\textrm{P}$が(m,n)にあるとき、その1秒後の点$\textrm{P}$の位置は等確率で
$(m+1,n), (m,n+1), (m,n-1), (m-1,n)$である。
6秒後に点$\textrm{P}$が直線$y=x$上にある確率を求めよ。
東京大学過去問
投稿日:2021.12.26