【高校数学】数Ⅲ-84 三角関数と極限③ - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-84 三角関数と極限③

問題文全文(内容文):
次の極限を求めよ。

①$\displaystyle \lim_{x\to \infty} \dfrac{\sin x}{x}$

②$\displaystyle \lim_{x\to 0} x^2 \sin \dfrac{1}{x}$

③$\displaystyle \lim_{x\to \infty} x \sin \dfrac{1}{x}$
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の極限を求めよ。

①$\displaystyle \lim_{x\to \infty} \dfrac{\sin x}{x}$

②$\displaystyle \lim_{x\to 0} x^2 \sin \dfrac{1}{x}$

③$\displaystyle \lim_{x\to \infty} x \sin \dfrac{1}{x}$
投稿日:2018.04.01

<関連動画>

共テ数学90%取る勉強法

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#数と式#2次関数#場合の数と確率#式と証明#複素数と方程式#式の計算(整式・展開・因数分解)#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#2次関数とグラフ#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#三角関数#指数関数と対数関数#微分法と積分法#整式の除法・分数式・二項定理#複素数#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#指数関数#対数関数#平均変化率・極限・導関数#数列#数列とその和(等差・等比・階差・Σ)#数学的帰納法#数学(高校生)#数B
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テスト数学90%取る勉強法説明動画です
この動画を見る 

福田のわかった数学〜高校2年生017〜折れ線の長さの最小値2

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 直線の方程式
原点中心,半径$r$の円$C$上に2点$A,B$を、
$\theta=\angle AOB \lt \displaystyle \frac{\pi}{2}$となるようにとり、劣弧$AB$
上に点$R$,線分$OA,OB$上にそれぞれ$P,Q$をとる。
$PQ+QR+RP$の最小値を$r,\theta$で表せ。
この動画を見る 

福田の数学〜慶應義塾大学2023年看護医療学部第1問(3)〜解と係数の関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)2次方程式$x^2$+$x$+3=0 の2つの解を$\alpha$、$\beta$とするとき、
$\frac{\beta}{\alpha}$+$\frac{\alpha}{\beta}$=$\boxed{\ \ オ\ \ }$であり、$\frac{\beta^2}{\alpha}$+$\frac{\alpha^2}{\beta}$=$\boxed{\ \ カ\ \ }$である。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

秋田大(医) 因数分解 整式の剰余 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2007秋田大学過去問題
因数分解せよ
(1) $x(x+1)(x+2)-y(y+1)(y+2)+xy(x-y)$
(2) $f(x)$を$x^2-4x+3$で割ったときの余りは$x+1$,$x^2-3x+2$で割ったときの余りは$3x-1$である。
$f(x)$を$x^3-6x^2+11x-6$で割ったときの余り。
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型文系第4問(1)〜命題の真偽と領域

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ (1)実数$x$, $y$に対する次の2つの条件を$p$, $q$を考える。ただし、$r$は正の定数である。
$p$:|$x+y$|≦3 かつ |$x-y$|≦3
$q$:$(x-1)^2$+$(y-1)^2$≦$r^2$
(i)命題「$p$ならば$q$」が真となるような$r$の最小値は$\sqrt{\boxed{\ \ メ\ \ }}$ である。
(ii)命題「$q$ならば$p$」が真となるような$r$の最大値は$\displaystyle\frac{\boxed{\ \ モ\ \ }}{\boxed{\ \ ヤ\ \ }}\sqrt{\boxed{\ \ ユ\ \ }}$ である。
この動画を見る 
PAGE TOP