福田のわかった数学〜高校3年生理系090〜グラフを描こう(12)無理関数、凹凸、漸近線 - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系090〜グラフを描こう(12)無理関数、凹凸、漸近線

問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう。(12)
$y=\sqrt[3]{x^3-x^2}$ のグラフを描け。ただし凹凸、漸近線も調べよ。
単元: #関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう。(12)
$y=\sqrt[3]{x^3-x^2}$ のグラフを描け。ただし凹凸、漸近線も調べよ。
投稿日:2021.11.01

<関連動画>

What is e?? The essence of e. Why (e^x)’=e^x

アイキャッチ画像
単元: #関数と極限#微分とその応用#数列の極限#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$\displaystyle \lim_{ n \to \infty }(1+\displaystyle \frac{1}{n})^n$
$\displaystyle \lim_{ h \to \infty }(1+h)^{\displaystyle \frac{1}{h}}$

(2)
$y=e^x$

(3)
動画内の図を見て求めよ

(4)
$y=log_{e}x$
$y^1=\displaystyle \frac{1}{x}$
この動画を見る 

浜松医大 確率 サイコロ4個・n個 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
浜松医科大学過去問題
(1)4個のサイコロを投げて1,1,2,2のように同じ目がちょうど2個ずつでる確率
(2)n=4,5,6・・・としてn個のサイコロを投げて、少なくとも(n-2)個のサイコロに同じ目がそろって出る確率$P_n$
 また$\displaystyle\lim_{n \to \infty}\frac{P_n+1}{P_n}$
この動画を見る 

大学入試問題#433「初手が大事」 #一橋大学(2020) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to \infty } (\cos^2\sqrt{ x+1 }+\sin^2\sqrt{ x })$

出典:2020年一橋大学(後期) 入試問題
この動画を見る 

数学「大学入試良問集」【17−3② 解けない漸化式とはさみうちの原理】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a_1=2,a_{n+1}=\displaystyle \frac{4a_n^2+9}{8a_n}(n=1,2,3,・・・)$で定義される数列$\{a_n\}$について以下の問いに答えよ。
(1)$a_n \gt \displaystyle \frac{3}{2}(n=1,2,3,・・・)$を証明せよ。
(2)$a_{n+1}-\displaystyle \frac{3}{2} \lt \displaystyle \frac{1}{3}\left[ a_n-\dfrac{ 3 }{ 2 } \right]^2(n=1,2,3,・・・)$を証明せよ。
(3)$\displaystyle \lim_{ n \to \infty }a_n$を求めよ。
この動画を見る 

福田の数学〜東京大学2018年理系第1問〜関数の増減と極限の計算

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$f(x)=\dfrac{x}{\sin x}+\cos x (0 \lt x \lt \pi)$のぞうげんひょうを作り、$x→+0,x→\pi-0$のときの極限を調べよ。

2018東京大学理過去問
この動画を見る 
PAGE TOP