【数学】中3-15 平方根① - 質問解決D.B.(データベース)

【数学】中3-15 平方根①

問題文全文(内容文):
①____がするとaになる数をaの平方根という。
そして、√ は②____がといって③____って読むんだ。
あと、√ は④____されると消えちゃうし、√ の中で⑤____になったやつは、√ の外に出てこれるんだよ!!

次の数の平方根をもとめよう!
5
9
2564
0.36
次の値はいくつ?
(6)2=
(11)2=
(49)=
100=
(3)2)=
1681=
単元: #数学(中学生)#中3数学#平方根
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①____がするとaになる数をaの平方根という。
そして、√ は②____がといって③____って読むんだ。
あと、√ は④____されると消えちゃうし、√ の中で⑤____になったやつは、√ の外に出てこれるんだよ!!

次の数の平方根をもとめよう!
5
9
2564
0.36
次の値はいくつ?
(6)2=
(11)2=
(49)=
100=
(3)2)=
1681=
投稿日:2013.05.25

<関連動画>

【流れをつかめば必ず解ける!】平方根:東海高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)#東海高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
655の整数部分をnとし,小数部分をtとする.
14t2+4t=◻である.

東海高校過去問
この動画を見る 

【高校受験対策/数学】死守55

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#2次関数#文字と式#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守55

(3)2+2×(5)を計算しなさい。

4x32×6x75を計算しなさい。

(4xy)2×(3x)を計算しなさい。

④連立方程式を解きなさい。
4x3y=7
5x+9y=13

56+224632を計算しなさい。

⑥二次方程式(x+4)(x6)=6x39を解きなさい。

②関数y=ax2について、xの値が5から3まで増加したときの変化の割合が2であるとき、aの値を求めなさい。

⑧底面の半径が5 cm、高さが6 cmの円すいの体積を求めなさい。 ただし円周率はπとする。

⑨右の図1のように、三角形ABCBの二等分線とCの外角ACDの二等分線の交点をEとする。
BACの大きさが40°のとき、BECの大きさを求めなさい。

⑩右の図2で、APB=120°のひし形AQBPを1つ、 定規とコンパスを用いて作図しなさい。 なお作図に用いた線は消さずに残して おきなさい。
この動画を見る 

【考え方が大切!整数論】平方根:香川県高校入試~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)#香川県公立高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 香川県の高校

次の問いに答えなさい。
180aが自然数となる
ような自然数aのうち、最も小さい数を求めよ。

この動画を見る 

ルートがらみの連立方程式。明大明治

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#連立方程式#平方根#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
2021x+2019y=2
2019x+2021y=1
x2y2=?

明治大学付属明治高等学校
この動画を見る 

【高校受験対策】数学-死守36

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守36

5+4×6を計算せよ

95÷0.812を計算せよ

60÷5+27を計算せよ

④比例式3:4=(x6):8についてxの値を求めよ。

3x2+9x12を因数分解せよ。

nを50以下の正の整数とするとき、5nの値が整数となるようなnの値をすべて求めよ。

⑦次の口と△にどんな自然数を入れても、計算の結果がつねに自然数 になるものはどれか。
下のア~エの中からあてはまるものをすべて答えよ。

ア 口+△
イ 口-△
ウ 口×△
エ 口÷△

⑧大小2つのさいころを同時に投げる。
大きいさいころの出た目の数をx座標、小さいさいころの出た目の数をy座標とする点をP(x,y)とするとき、点Pが1次関数y=x+8のグラフ上の点となる確率を求めよ。

⑨右の図は半径rcmの球を切断して できた半球で、切断面の円周の長さは4πcmであった。
このときrの値を求めよ。
また、この半球の体積は何cm3か。 ただしπは円周率とする。
この動画を見る 
PAGE TOP preload imagepreload image