【概要欄に正確な文章と説明の補足】大学入試問題#76 京都大学(2007) 数列と極限 - 質問解決D.B.(データベース)

【概要欄に正確な文章と説明の補足】大学入試問題#76 京都大学(2007) 数列と極限

問題文全文(内容文):
$x,y$:異なる正の実数
$a_1=0$
$a_{n+1}=x a_n=s\ a_n+y^{n+1}$のとき
$\displaystyle \lim_{ n \to \infty }a_n \lt \infty$となるような$(x,y)$の範囲を図示せよ。

出典:2007年京都大学 入試問題
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x,y$:異なる正の実数
$a_1=0$
$a_{n+1}=x a_n=s\ a_n+y^{n+1}$のとき
$\displaystyle \lim_{ n \to \infty }a_n \lt \infty$となるような$(x,y)$の範囲を図示せよ。

出典:2007年京都大学 入試問題
投稿日:2022.01.01

<関連動画>

【高校数学】等差数列の一般項の例題2第~一緒に解こう~ 3-2.5【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
次の等差数列の一般項を求めよ。
また、その第8項を求めよ。
23,17,11,5,…

2⃣
第5項が-5,第10項が15である等差数列{an}がある。
この数列の一般項を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題023〜名古屋大学2016年度理系数学第3問〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数B
指導講師: 福田次郎
問題文全文(内容文):
玉が2個ずつ入った2つの袋A,Bがあるとき、袋Bから玉を1個取り出して
袋Aに入れ、次に袋Aから玉を1個取り出して袋Bに入れる。という操作を
1回の操作と数えることにする。Aに赤玉が2個、Bに白玉が2個入った状態から
始め、この操作をn回繰り返した後に袋Bに入っている赤玉の個数がk個で
ある確率を$P_n(k)(n=1,2,3,\cdots)$とする。このとき、次の問いに答えよ。

(1)$k=0,1,2$に対する$P_1(k)$を求めよ。
(2)$k=0,1,2$に対する$P_n(k)$を求めよ。

2016名古屋大学理系過去問
この動画を見る 

大学入試問題#53 横浜市立大学(2020) 数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#横浜市立大学
指導講師: ますただ
問題文全文(内容文):
$a_1=1$
$a_{n+1}=\displaystyle \frac{a_n}{2n\ a_n+3}$で定まる数列の一般項$a_n$を求めよ

出典:2020年横浜市立大学 入試問題
この動画を見る 

福田の一夜漬け数学〜等差数列・等比数列(1)〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
初項から第10項までの和が550,初項から第20項までの和が700である
等差数列$\left\{a_n\right\}$について
(1)一般項$a_n$を求めよ。
(2)数列$\left\{a_n\right\}$の第20項から第30項までの和を求めよ。
(3)初項から第$n$項までの和$S_n$の最大値とそのときのnの値を求めよ。


初項から第4項までの和が45,初項から第8項までの和が765である
等比数列$\left\{a_n\right\}$を考える。
(1)一般項$a_n$を求めよ。
(2)数列$\left\{a_n\right\}$の公比が正であるとき、数列$\left\{a_{2n-1}\right\}$はどのような数列か。
この動画を見る 

福田の数学〜慶應義塾大学2024年看護医療学部第3問〜群数列

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 数列 $\frac{0}{1}$, $\frac{1}{1}$, $\frac{0}{2}$, $\frac{1}{2}$, $\frac{2}{2}$, $\frac{0}{3}$, $\frac{1}{3}$, $\frac{2}{3}$, $\frac{3}{3}$, $\frac{0}{4}$, $\frac{1}{4}$, $\frac{2}{4}$, $\frac{3}{4}$, $\frac{4}{4}$, $\frac{0}{5}$, ...
の第$n$項を$a_n$とする。
(1)約分することで$a_n$=1 を満たす自然数$n$のうち、$k$番目に小さいものを$N_k$で表す。例えば、$N_1$=2, $N_2$=5 である。また、自然数$k$に対して、$N_k$を$k$を用いて表すと$N_k$=$\boxed{\ \ セ\ \ }$である。また、自然数$k$に対して、数列$\left\{a_n\right\}$の初項から第$N_k$項までの和を$k$を用いて表すと$\boxed{\ \ ソ\ \ }$である。
(2)約分することで$a_n$=$\frac{1}{4}$ を満たす自然数$n$のうち、$k$番目に小さいものを$M_k$で表す。例えば$M_1$=11, $M_2$=$\boxed{\ \ タ\ \ }$である。このとき、自然数$k$に対して、$M_k$を$k$を用いて表すと$M_k$=$\boxed{\ \ チ\ \ }$である。
(3)$a_{200}$を約分した形で表すと$a_{200}$=$\boxed{\ \ ツ\ \ }$である。また数列$\left\{a_n\right\}$の初項から第200項までの和は$\boxed{\ \ テ\ \ }$である。
この動画を見る 
PAGE TOP