極限 中国人民大学 - 質問解決D.B.(データベース)

極限 中国人民大学

問題文全文(内容文):
$\displaystyle \lim_{x\to \infty}\left(\dfrac{x^2}{x^2-1}\right)^x$

中国人民大学過去問
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \lim_{x\to \infty}\left(\dfrac{x^2}{x^2-1}\right)^x$

中国人民大学過去問
投稿日:2021.05.30

<関連動画>

福田の数学〜立教大学2025経済学部第1問(4)〜2直線が1点で交わる条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(4)実数$a$は定数とする。

座標平面上の$2$つの直線$(a+1)x+ay=1$

$ax+(a+2)y=2$がただ$1$つの交点を持つための

$a$の条件は$\boxed{カ}$である。

$2025$年立教大学経済学部過去問題
この動画を見る 

放物線と直線

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#図形と方程式#点と直線#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{a}{b}=?$
*図は動画内参照

ラ・サール高等学校
この動画を見る 

福田の数学〜名古屋大学2022年理系第1問〜割り算の余りと異なる実数解の個数

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数とする。                        
(1)整式$x^3$を2次式$(x-a)^2$で割った時の余りを求めよ。
(2)実数を係数とする2次式$f(x)=x^2+\alpha x+\beta$で整式$x^3$を割った時の余りが
$3x+b$とする。bの値に応じて、このようなf(x)が何個あるかを求めよ。

2022名古屋大学理系過去問
この動画を見る 

福田の数学〜早稲田大学2021年社会科学部第1問〜三角関数で表された点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#三角関数#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ a,bを定数とし、関数$f(x)=x^2+ax+b$ とする。方程式$f(x)=0$の2つの解$\alpha,\beta\\$
が次式で与えられている。
$\alpha=\frac{\sin\theta}{1+\cos\theta}$, $\beta=\frac{\sin\theta}{1-\cos\theta}\\$
ここで$\theta$は、$0 \lt \theta \lt \pi$の定数である。次の問いに答えよ。
$(1)a,b$を$\theta$を用いて表せ。
$(2)\theta$が$0$ $\lt \theta \pi$で変化するとき、放物線$y=f(x)$の頂点の軌跡を求めよ。
$(3)\int_0^{2\sin\theta}f(x)dx=0$ となる$\theta$の値を全て求めよ。


2021早稲田大学社会科学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2025経済学部第1問(2)〜2変数の不等式と領域

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2)不等式

$\vert m+n-6 \vert + \vert m-n-2 \vert \leqq 6 \cdots ①$

を満たす整数$m,n$を考える。

$(m+n-6)(m-n-2)\geqq 0$のとき、$m$と$n$が

不等式①を満たすための必要十分条件は

$\boxed{セ} \leqq m \leqq \boxed{ソ}$

である。

同様に、$(m+n-6)(m-n-2)\leqq 0$のとき、

$m$と$n$が①を満たすための必要十分条件は

$\boxed{タチ}\leqq n \leqq \boxed{ツ}$

である。よって、$m$と$n$が①を満たすとき、

$(m-n)(m+n-6)$の最大値は、

$(m-n)(m+n-6)=(m-\boxed{テ})^2-(n-\boxed{ト})^2$

より$\boxed{ナニ}$である。

$2025$年慶應義塾大学経済学部過去問題
この動画を見る 
PAGE TOP