大学入試問題#649「慌てない慌てない」 青山学院大(2006) 定積分 - 質問解決D.B.(データベース)

大学入試問題#649「慌てない慌てない」 青山学院大(2006) 定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{1} x(1+x^2\sin\displaystyle \frac{\pi\ x}{2}) dx$

出典:2006年青山学院大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} x(1+x^2\sin\displaystyle \frac{\pi\ x}{2}) dx$

出典:2006年青山学院大学 入試問題
投稿日:2023.11.15

<関連動画>

新潟大(医)3次関数・接線・面積 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#新潟大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$C:y=2x^3-12x$
$l:(1,-2)$を通る$C$の接線

(1)
$l$の方程式

(2)
$C$と$l$とで囲まれた面積

出典:2006年新潟大学医学部 過去問
この動画を見る 

中学生にはきついよ 因数分解 東京農大一

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)#東京農工大学
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$4a^4b^4-29a^2b^2+25$
この動画を見る 

【理数個別の過去問解説】2019年度 明治大学 経営学部 数学 第3問解説(2)

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
〔Ⅲ〕$x+2y=5、x\gt 0,y\gt 0$を満たす実数x,yがある。
  (1) $2x^2+y^2$の最小値
  (2)$\log_{10}x+2\log_{10}y$の最大値
  (3)$\dfrac{1}{x}+\dfrac{2}{y}$ の最小値
この動画を見る 

大分大(医) 面積 積分計算の工夫 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#微分法#学校別大学入試過去問解説(数学)#不定積分・定積分#大分大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=(x-a)(x-4)(x-b)$
$a \lt 4 \lt b$

(1)
$f(x)$と$x$軸とで囲まれる2つの部分の面積が等しいとき、$a+b$の値は?


(2)
$a \gt o,f(x),x$軸$,y$軸とで囲まれる3つの部分の面積が等しいとき、$a,b$の値は?


出典:2006年大分大学 過去問
この動画を見る 

福田の数学〜空間の位置ベクトルの考え方〜明治大学2023年理工学部第1問(4)〜平面と直線の交点の位置ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (4)四面体OABCにおいて、辺OAを1:3に内分する点をD、辺ABを1:2に内分する点をE、辺OCを1:2に内分する点をFとすると、
$\overrightarrow{DE}$=$\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハヒ\ \ }}\overrightarrow{OA}$+$\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}\overrightarrow{OB}$, $\overrightarrow{DF}$=$-\frac{\boxed{\ \ ホ\ \ }}{\boxed{\ \ マ\ \ }}\overrightarrow{OA}$+$\frac{\boxed{\ \ ミ\ \ }}{\boxed{\ \ ム\ \ }}\overrightarrow{OC}$
である。さらに、3点D,E,Fを通る平面と辺BCの交点をGとすると、
$\overrightarrow{DF}$=$\frac{\boxed{\ \ メ\ \ }}{\boxed{\ \ モ\ \ }}\overrightarrow{DE}$+$\frac{\boxed{\ \ ヤ\ \ }}{\boxed{\ \ ユ\ \ }}\overrightarrow{DF}$
である。したがって、$\overrightarrow{BG}$=$\frac{\boxed{\ \ ヨ\ \ }}{\boxed{\ \ ラ\ \ }}\overrightarrow{BC}$ となる。
この動画を見る 
PAGE TOP