大小比較の難問!どう解く? - 質問解決D.B.(データベース)

大小比較の難問!どう解く?

問題文全文(内容文):
e^πとπ^eの大小を比較せよ。
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
e^πとπ^eの大小を比較せよ。
投稿日:2024.11.16

<関連動画>

福田の数学〜立教大学2025経済学部第1問(1)〜指数不等式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$

(1)$2^{1-3x} \geqq \left(\dfrac{1}{\sqrt2}\right)^x$を満たす

実数$x$の値の範囲は$\boxed{ア}$である。

$2025$年立教大学経済学部過去問題
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第4問〜指数関数と直線の位置関係と極限

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#関数と極限#微分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
曲線$C:y=e^x$を考える。
(1)$a,b$を実数とし、$a \geqq 0$とする。曲線Cと直線$y=ax+b$が共有点をもつため
のaとbの条件を求めよ。
(2)正の実数tに対し、C上の点$A(t,e^t)$を中心とし、直線$y=x$に接する円Dを
考える。直線$y=x$と円Dの接点Bのx座標は$\boxed{\ \ タ\ \ }$であり、
円Dの半径は$\boxed{\ \ チ\ \ }$である。線分ABを3:2に内分する点をPとし、Pのx座標、y座標
をそれぞれX(t),Y(t)とする。このとき、等式
$\lim_{t \to \infty}\frac{Y(t)-kX(t)}{\sqrt{\left\{X(t)\right\}^2+\left\{Y(t)\right\}^2}}=0$
が成り立つような実数kを定めると$k=\boxed{\ \ ツ\ \ }$である。
ただし、$\lim_{t \to \infty}te^{-t}=0$である。

2022慶應義塾大学理工学部過去問
この動画を見る 

指数法則

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 12^{a+b}=18^{2a-b}$とするとき,
$3^{\frac{a}{b}}$はいくつか?
この動画を見る 

319 入れ子になった関数を読み解く:距離を求める関数

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
正の実数 aと 実数 bに対して、べき乗(a, b)はaのb乗を計算して返す関数である。
正の実数x, yに対して、√(xの2乗足すyの2乗)の計算結果を返す関数は次のうちどれか。
1.(べき乗(x,2)+べき乗(y,2))/2
2.べき乗(べき乗(x,2),0.5)+べき乗(べき乗(y,2),0.5)
3.べき乗(べき乗(x,2)+べき乗(y,2),0.5)
4.べき乗(べき乗(x+y,2),0.5)
この動画を見る 

福田の一夜漬け数学〜多変数関数1文字固定(3)〜受験編

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#指数関数と対数関数#微分法と積分法#軌跡と領域#指数関数#平均変化率・極限・導関数#接線と増減表・最大値・最小値#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
三辺の長さがa,b,cである直方体を長さがbの一辺を回転軸として$90^{ \circ }$
回転させる。直方体が通過する点全体が作る体積をVとする。
(1)$V$を$a,b,c$で表せ。
(2)$a+b+c=1$のとき、$V$の取り得る値の範囲を求めよ。
この動画を見る 
PAGE TOP