【中学数学】数学用語チェック絵本vol.7 データの分析と活用 - 質問解決D.B.(データベース)

【中学数学】数学用語チェック絵本vol.7  データの分析と活用

問題文全文(内容文):
データの分析と活用の用語をチェック!
チャプター:

0:00 表紙
0:07 本編
2:13 キャラクター紹介
2:24 エンディング

単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
データの分析と活用の用語をチェック!
投稿日:2023.02.22

<関連動画>

福田のわかった数学〜高校2年生061〜対称式と領域(3)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#図形と方程式#微分法と積分法#軌跡と領域#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 対称式と領域(3)
実数$x,\ y$が$x^2+xy+y^2=6$を
満たしながら動くとき
$x^2y+xy^2-x^2-2xy-y^2+x+y$
の取り得る値の範囲を求めよ。
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[1]。直線と円の表す領域とが共有点をもつ条件の問題。

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#円と方程式#軌跡と領域#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
[1]座標平面上に点A(-8,0)をとる。また、不等式
$x^2+y^2-4x-10y+4 \leqq 0$
の表す領域をDとする。

(1)領域Dは、中心が点$(\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ })$、半径が$\boxed{\ \ ウ\ \ }$の円の
$\boxed{\ \ エ\ \ }$である。

$\boxed{\ \ エ\ \ }$の解答群
⓪ 周   ① 内部   ② 外部   
③ 周および内部   ④ 周および外部  

以下、点$(\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ })$をQとし、方程式
$x^2+y^2-4x-10y+4=0$
の表す図形をCとする。

(2)点Aを通る直線と領域Dが共有点をもつのはどのようなときかを考えよう。
$(\textrm{i})(1)$により、直線$y=\boxed{\ \ オ\ \ }$は点Aを通るCの接線の一つとなること
がわかる。
太郎さんと花子さんは点Aを通るCのもう一つの接線について話している。
点Aを通り、傾きがkの直線をlとする。

太郎:直線lの方程式は$y=k(x+8)$と表すことができるから、
これを
$x^2+y^2-4x-10y+4=0$
に代入することで接線を求められそうだね。
花子:x軸と直線AQのなす角のタンジェントに着目することでも
求められそうだよ。

$(\textrm{ii})$ 太郎さんの求め方について考えてみよう。
$y=k(x+8)$を$x^2+y^2-4x-10y+4=0$に代入すると、
xについての2次方程式
$(k^2+1)x^2+(16k^2-10k-4)x+64k^2-80k+4=0$
が得られる。この方程式が$\boxed{\ \ カ\ \ }$ときのkの値が接線の傾きとなる。

$\boxed{\ \ カ\ \ }$の解答群
⓪重解をもつ
①異なる2つの実数解をもち、1つは0である
②異なる2つの正の実数解をもつ
③正の実数解と負の実数解をもつ
④異なる2つの負の実数解をもつ
⑤異なる2つの虚数解をもつ

$(\textrm{iii})$花子さんの求め方について考えてみよう。
x軸と直線AQのなす角を$\theta(0 \lt \theta \leqq \frac{\pi}{2})$とすると
$\tan\theta=\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}$
であり、直線$y=\boxed{\ \ オ\ \ }$と異なる接線の傾きは$\tan\boxed{\ \ ケ\ \ }$
と表すことができる。

$\boxed{\ \ ケ\ \ }$の解答群
⓪$\theta$   ①$2\theta$   ②$(\theta+\frac{\pi}{2})$
③$(\theta-\frac{\pi}{2})$   ④$(\theta+\pi)$   ⑤$(\theta-\pi)$
⑥$(2\theta+\frac{\pi}{2})$   ⑦$(2\theta-\frac{\pi}{2})$

$(\textrm{iv})$点Aを通るCの接線のうち、直線$y=\boxed{\ \ オ\ \ }$と異なる接線の傾き
を$k_0$とする。このとき、$(\textrm{ii})$または$(\textrm{iii})$の考え方を用いることにより
$k_0=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}$
であることがわかる。
直線lと領域Dが共有点をもつようなkの値の範囲は$\boxed{\ \ シ\ \ }$である。

$\boxed{\ \ シ\ \ }$の解答群
⓪$k \gt k_0$ ①$k \geqq k_0$
②$k \lt k_0$ ③$k \leqq k_0$
④$0 \lt k \lt k_0$ ⑤$0 \leqq k \leqq k_0$

2022共通テスト数学過去問
この動画を見る 

【高校数学】テスト直前の高校1年生は必見!因数分解はこの手順で考えると上手くいく!#高校数学 #因数分解 #数学

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
因数分解のコツを解説していきます.
この動画を見る 

3通りで解ける!因数分解 早稲田本庄

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a^2+b^2-3c^2+2(ab-bc-ca)$を因数分解せよ。

早稲田大学 本庄高等学院
この動画を見る 

【高校数学】数Ⅲ-75 循環小数

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の循環小数を分数に直せ。

①$0.\dot{5}$

②$0.\dot{2}7\dot{0}$

③$0.7\dot{1}\dot{5}$
この動画を見る 
PAGE TOP