福田の数学〜立教大学2024年経済学部第2問〜接線が作る三角形の面積の最小値 - 質問解決D.B.(データベース)

福田の数学〜立教大学2024年経済学部第2問〜接線が作る三角形の面積の最小値

問題文全文(内容文):
$p,q$を正の定数とする。座標平面上に放物線$C:y=-x^2$がある。$C$上の点$\mathrm{P}(p,-p^2)$における$C$の接線を$l$,$\mathrm{Q}(q,-q^2)$における$C$の接線を$m$とする。また$l$と$m$の交点を$\mathrm{R}$とする。
(1) $l,m$の方程式をそれぞれ求めよ。
(2) $\mathrm{R}$の座標を$p,q$を用いて表せ。
(3) $\mathrm{Q}$と$l$の距離$d$を$p,q$を用いて表せ。
(4) 三角形$\mathrm{PQR}$の面積$S$を$p,q$を用いて表せ。
(5) $l$と$m$が直交するとき、$q$を$p$を用いて表せ。
(6) $l$と$m$が直交するとき、(4)の$S$の最小値を求めよ。また、そのときの$p$の値を求めよ。
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$p,q$を正の定数とする。座標平面上に放物線$C:y=-x^2$がある。$C$上の点$\mathrm{P}(p,-p^2)$における$C$の接線を$l$,$\mathrm{Q}(q,-q^2)$における$C$の接線を$m$とする。また$l$と$m$の交点を$\mathrm{R}$とする。
(1) $l,m$の方程式をそれぞれ求めよ。
(2) $\mathrm{R}$の座標を$p,q$を用いて表せ。
(3) $\mathrm{Q}$と$l$の距離$d$を$p,q$を用いて表せ。
(4) 三角形$\mathrm{PQR}$の面積$S$を$p,q$を用いて表せ。
(5) $l$と$m$が直交するとき、$q$を$p$を用いて表せ。
(6) $l$と$m$が直交するとき、(4)の$S$の最小値を求めよ。また、そのときの$p$の値を求めよ。
投稿日:2024.07.18

<関連動画>

一橋大学 三次関数の最大値 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2007一橋大学過去問題
aを定数とし、$f(x)=x^3-3ax^2+a$とする。
$x \leqq 2$の範囲でf(x)の最大値が105となるようなaをすべて求めよ。
この動画を見る 

東京農工大 3次関数の最大値

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ f(x)=2x^3-5x^2-4x+1,x \leqq a $における$f(n)$の最大値を求めよ.

東京農工大過去問
この動画を見る 

11三重県教員採用試験(数学:5-(2) 極限値)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{5}(2)$
$\displaystyle \lim_{x\to\infty} (2-3x)\sin \left\{\log(2x+2)-\log(2x+1)\right\}$の
極限値を求めよ.
この動画を見る 

2変数関数の値域 日大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#日本大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x\gt 0,y \gt 0$において$\dfrac{2x^2-4xy+7y^2}{x^2+y^2}$のとり得る範囲を求めよ.

日大過去問
この動画を見る 

【高校数学】 数Ⅱ-17 等式の証明②

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\displaystyle \frac{a}{b}=\displaystyle \frac{c}{d}$のとき、$\displaystyle \frac{a^2-b^2}{a^2+b^2}=\displaystyle \frac{c^2-d^2}{c^2+d^2}$が成り立つことを証明しよう。

②$a:b:c=2:3:4$、abc≠0のとき、$\displaystyle \frac{ab+bc+ca}{a^2+b^2+c^2}$の値を求めよう。
この動画を見る 
PAGE TOP