福田の数学〜立教大学2024年経済学部第2問〜接線が作る三角形の面積の最小値 - 質問解決D.B.(データベース)

福田の数学〜立教大学2024年経済学部第2問〜接線が作る三角形の面積の最小値

問題文全文(内容文):
$p,q$を正の定数とする。座標平面上に放物線$C:y=-x^2$がある。$C$上の点$\mathrm{P}(p,-p^2)$における$C$の接線を$l$,$\mathrm{Q}(q,-q^2)$における$C$の接線を$m$とする。また$l$と$m$の交点を$\mathrm{R}$とする。
(1) $l,m$の方程式をそれぞれ求めよ。
(2) $\mathrm{R}$の座標を$p,q$を用いて表せ。
(3) $\mathrm{Q}$と$l$の距離$d$を$p,q$を用いて表せ。
(4) 三角形$\mathrm{PQR}$の面積$S$を$p,q$を用いて表せ。
(5) $l$と$m$が直交するとき、$q$を$p$を用いて表せ。
(6) $l$と$m$が直交するとき、(4)の$S$の最小値を求めよ。また、そのときの$p$の値を求めよ。
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$p,q$を正の定数とする。座標平面上に放物線$C:y=-x^2$がある。$C$上の点$\mathrm{P}(p,-p^2)$における$C$の接線を$l$,$\mathrm{Q}(q,-q^2)$における$C$の接線を$m$とする。また$l$と$m$の交点を$\mathrm{R}$とする。
(1) $l,m$の方程式をそれぞれ求めよ。
(2) $\mathrm{R}$の座標を$p,q$を用いて表せ。
(3) $\mathrm{Q}$と$l$の距離$d$を$p,q$を用いて表せ。
(4) 三角形$\mathrm{PQR}$の面積$S$を$p,q$を用いて表せ。
(5) $l$と$m$が直交するとき、$q$を$p$を用いて表せ。
(6) $l$と$m$が直交するとき、(4)の$S$の最小値を求めよ。また、そのときの$p$の値を求めよ。
投稿日:2024.07.18

<関連動画>

福田の数学〜東京慈恵会医科大学2022年医学部第2問〜微分可能性と最大値と体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):
実数aは正の定数とする。実数全体で定義された関数$f(x)=\frac{|x+a|}{\sqrt{x^2+1}}$について、
次の問いに答えよ。
(1)$f(x)$が$x=-a$で微分可能であるかどうか調べよ。
(2)$f(x)$の最大値が$\sqrt2$となるように、定数aの値を定めよ。
(3)定数aは(2)で定めた値とする。$y=f(x)$のグラフとx軸およびy軸で囲まれた部分
をx軸の周りに1回転させてできる立体の体積Vを求めよ。

2022東京慈恵会医科大学医学部過去問
この動画を見る 

高専数学 微積II n次近似式

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)$の$x=a$における$n$次近似式の等式は
$f(x)=\dfrac{f(a)}{O!}+\dfrac{f'(a)}{1!}(x-a)+・・・・・・$
$+\dfrac{f^{(n)}(a)}{n!} (x-a)^n+\xi_n (x)$
つまり
$f(x)=\displaystyle \sum_{k=0}^{n}\dfrac{f^{(k)}(a)}{k!} (x-a)^k+\xi (x)$
ただし
$\displaystyle \lim_{x\to a} \dfrac{\xi_n(x)}{(x-a)^n}=0$

これを解け.
この動画を見る 

不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x>yのとき、x^3>y^3を示せ。(x,yは実数)$
この動画を見る 

【高校数学】 数Ⅱ-92 三角関数の性質③

アイキャッチ画像
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の値を求めよう。

①$\sin \displaystyle \frac{7}{3}π$

②$\cos \displaystyle \frac{11}{4}π$

③$\tan \displaystyle \frac{19}{4}π$

④$\sin (-\displaystyle \frac{π}{6})$

⑤$\cos -\displaystyle \frac{π}{3}$

⑥$\tan (-\displaystyle \frac{π}{6})$
この動画を見る 

06兵庫県教員採用試験(数学:3番 円と直線の関係)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
円$c:x^2+y^2=1+m$と直線$l:y=-3x+m$が異なる2点$A,B$で交わる。
$m$は定数

(1)
$m$の値の範囲を求めよ

(2)
弦$AB$の長さの最大値とそのときの$m$の値を求めよ。
この動画を見る 
PAGE TOP