慶應より早稲田より青山が難しい。 - 質問解決D.B.(データベース)

慶應より早稲田より青山が難しい。

問題文全文(内容文):
下の文字を1列に並べたとき場合の数は何通り?
(1)K,E,I,O
(2)W,A,S,E,D,A
(3)A,O,Y,A,M,A
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
下の文字を1列に並べたとき場合の数は何通り?
(1)K,E,I,O
(2)W,A,S,E,D,A
(3)A,O,Y,A,M,A
投稿日:2021.03.21

<関連動画>

【数A】場合の数:出目の積! 大、中、小3個のさいころを投げるとき、目の積が4の倍数になる場合は何通りあるか。

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大、中、小3個のさいころを投げるとき、目の積が4の倍数になる場合は何通りあるか。
この動画を見る 

福田の数学〜立教大学2021年経済学部第1問(3)〜さいころの確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(3)3個のさいころを1回投げるとき、出た目の最大値が3となる確率は
$\boxed{エ}$であり、また、出た目の積が8となる確率は$\boxed{オ}$である。

2021立教大学経済学部過去問
この動画を見る 

福田の数学〜早稲田大学2022年商学部第2問〜ベクトルに序列を定義して数える

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#空間ベクトル#場合の数#空間ベクトル#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
空間ベクトルに対し、次の関係を定める。
$\overrightarrow{ a }=(a_1,a_2,a_3)$と$\overrightarrow{ b }=(b_1,b_2,b_3)$が、
次の$(\textrm{i}),(\textrm{ii}),(\textrm{iii})$のいずれかを
満たしているとき$\overrightarrow{ a }$は$\overrightarrow{ b }$より前であるといい、
$\overrightarrow{ a }≺ \overrightarrow{ b }$と表す。
$(\textrm{i})a_1 \lt b_1\ \ \ (\textrm{ii})a_1=b_1$かつ
$a_2 \lt b_2\ \ \ (\textrm{iii})a_1=b_1$かつ$a_2=b_2$かつ$a_3 \lt b_3$

空間ベクトルの集合$P=\left{{(x,y,z) | x,y,zは0以上7以下の整数\right}$の要素を
前から順に$\overrightarrow{ p_1 },\overrightarrow{ p_2 },\ldots,\overrightarrow{ p_m }$とする。
ここで、mはPに含まれる要素の総数を表す。
つまり、$P=\left\{\overrightarrow{ p_1 },\overrightarrow{ p_2 },\ldots,\overrightarrow{ p_m }\right\}$であり、
$\overrightarrow{ p_n }≺ \overrightarrow{ p_{n+1} }(n=1,2,\ldots,m-1)$
を満たしている。次の各設問に答えよ。
(1)$\overrightarrow{ p_{67} }$を求めよ。
(2)集合$\left\{n\ \ \ | \ \overrightarrow{ p_n }∟(1,0,-2)\right\}$の要素のうちで最大のものを求めよ。

2022早稲田大学商学部過去問
この動画を見る 

【数A】【場合の数と確率】同じ文字を含む並び替え1 ※問題文は概要欄

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
YOKOHAMAの8文字を1列に並べる。
(1)OとAが必ず偶数番目にあるものは何通りあるか。
(2)Y,K,H,Mがこの順にあるものは何通りあるか。
この動画を見る 

【高校数学】  数A-28  確率⑩ ・ じゃんけん編

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①3人でじゃんけんを1回するとき、1人だけが勝つ確率は?
②3人でじゃんけんを1回するとき、あいこになる確率は?
③4人でじゃんけんを1回するとき、あいこになる確率は?
この動画を見る 
PAGE TOP