【高校数学】 数Ⅱ-73 2つの円③ - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-73 2つの円③

問題文全文(内容文):
◎次の2つの円の共有点の座標を求めよう。

①$x^2+y^2=10, x^2+y^2-2x-y-5=0$

②$x^2+y^2= 5, x^2+y^2-6x-12y+25=0$
単元: #数Ⅱ#図形と方程式#円と方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の2つの円の共有点の座標を求めよう。

①$x^2+y^2=10, x^2+y^2-2x-y-5=0$

②$x^2+y^2= 5, x^2+y^2-6x-12y+25=0$
投稿日:2015.07.07

<関連動画>

信州大(医)多項式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数$x,y$が
$2^4-2x^3y-3x^3+3x^2y-xy+y^2+x-y=0$を満たすとき、$x^2+y^2-4y+4$の最小値は?

出典:信州大学医学部 過去問
この動画を見る 

円を表す方程式

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
円を表す方程式
*図は動画内参照
この動画を見る 

福田のわかった数学〜高校2年生028〜定点通過(直線群、円群)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 定点通過(直線群・円群)\\
放物線y=x^2+5x-4 と\\
y=-x^2+ax+2 の2つの交点を\\
通る直線をlとする。lが点(2,3)を\\
通るときaの値とlの方程式を求めよ。
\end{eqnarray}
この動画を見る 

福田の1.5倍速演習〜合格する重要問題099〜早稲田大学2020年度社会科学部第3問〜複数の円の位置関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 座標平面上の5つの点$P_1$($-\sqrt 5$, 0), $P_2$($-\frac{\sqrt 5}{2}$, $-\frac{\sqrt 3}{2}$), $P_3$(0, 0), $P_4$($\frac{\sqrt 5}{2}$, $-\frac{\sqrt 3}{2}$), $P_5$($\sqrt 5$, 0)をそれぞれ中心とする半径1の円を$C_1$, $C_2$, $C_3$, $C_4$, $C_5$とする。次の問に答えよ。
(1)1つ以上の円に囲まれる領域の面積を求めよ。
(2)2つ以上の円と接する直線の本数を求めよ。
(3)3つ以上の円と外接する円の半径をすべて求めよ。

2020早稲田大学社会科学部過去問
この動画を見る 

福田の数学〜東京大学2023年理系第3問〜円と放物線と切り取られる弦の長さ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#円と方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ aを実数とし、座標平面上の点(0,a)を中心とする半径1の円の周をCとする。
(1)Cが不等式$y>x^2$の表す領域に含まれるようなaの範囲を求めよ。
(2)aは(1)で求めた範囲にあるとする。Cのうちx≧0かつy<aを満たす部分をSとする。S上の点Pに対し、点PでのCの接線が放物線$y=x^2$によって切り取られてできる線分の長さを$L_P$とする。$L_Q$=$L_R$となるS上の相異なる2点Q, Rが存在するようなaの範囲を求めよ。

2023東京大学理系過去問
この動画を見る 
PAGE TOP