【数Ⅰ】【数と式】因数分解2 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅰ】【数と式】因数分解2 ※問題文は概要欄

問題文全文(内容文):
因数分解せよ
問1 整理と因数分解
(1) $xy-x-y+1$
(2) $ab+bc-cd-da$
(3) $25-15y+3xy-x^2$
(4) $a^2b+a^2-b-1$
(5) $a^2+b^2+2bc+2ca+2ab$
(6) $2x^2+2xy-3x-4y-2$
問2 たすき掛け
(1) $x^2+(3y+1)x+(y+4)(2y-3)$
(2) $x^2+3xy+2y^2-6x-11y+5$
(3) $x^2-2xy+y^2-x+y-2$
(4) $2x^2+5xy+2y^2+4x-y-6$
(5) $2x^2+xy-y^2+7x-5y-4$
(6) $2x^2+5xy-3y^2-x+11y-6$
チャプター:

0:00 開始
2:20 整理と因数分解 
12:47 たすき掛け

単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
因数分解せよ
問1 整理と因数分解
(1) $xy-x-y+1$
(2) $ab+bc-cd-da$
(3) $25-15y+3xy-x^2$
(4) $a^2b+a^2-b-1$
(5) $a^2+b^2+2bc+2ca+2ab$
(6) $2x^2+2xy-3x-4y-2$
問2 たすき掛け
(1) $x^2+(3y+1)x+(y+4)(2y-3)$
(2) $x^2+3xy+2y^2-6x-11y+5$
(3) $x^2-2xy+y^2-x+y-2$
(4) $2x^2+5xy+2y^2+4x-y-6$
(5) $2x^2+xy-y^2+7x-5y-4$
(6) $2x^2+5xy-3y^2-x+11y-6$
投稿日:2024.11.05

<関連動画>

福田の数学〜大阪大学2023年文系第1問〜三角方程式と解の存在範囲

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#図形と方程式#三角関数#円と方程式#三角関数とグラフ#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数とする。θについての方程式

$\cos 2θ =a\sin θ +b$

が実数解をもつような点(a,b)の存在範囲を座標平面上に図示せよ

2023大阪大学文系過去問
この動画を見る 

引くばか 二次方程式の応用 昭和学院秀英

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
2次方程式$2x^2-5x+c=0$の2つの解の比が2:3である。
定数cの値を求めよ。
昭和学院秀英高等学校
この動画を見る 

【できなきゃ死】今のうちに展開をマスターしとこ【数学】【中学3年数学、高校数学】

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
①$(x+a)(x+b)=$
②$(x+a)^2=$
③$(x-a)^2=$
④$(x+a)(x-a)=$
この動画を見る 

数と式 式の展開①【化学のタカシーがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
[ ]内の文字について降べきの順に整理せよ
$ax^2+bx-x^4+ax^2-ab [x]$
$2x^2+y^2-3xy-2y^2+3y+4xy-x^2-2x-5 [y]$
$ax^3+a^2x-2x^2-a^3-3ax^3+4a^3 [a]$
$a^2b+b^3+abc-a^2c-ac^2+bc^2-ab^2+c^3 [a]$

ある多項式から$3x^2-xy+2y^2$を引くところ
を誤って加えたため,答えが$2x^2+xy-y^2$
となった。正しい答えを求めよ

次の式を展開した時の[ ]内の項の係数を
求めよ
$(5a^3-3a^2b+7ab^2-2b^3)(3a^2+2ab-3b^2)[a^2b^3][a^3b^2]$
$(x+2y-z)(3x+4y+2z)(-x+y-3z)[xy^2][xyz]$
この動画を見る 

大学入試問題#597「難しくはないと思う」 大阪教育大学(2014) #命題②

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師: ますただ
問題文全文(内容文):
$\alpha=\sqrt[ 3 ]{ 2 }$(が無理数は使用可)
$\alpha^2+p\alpha+q=0$を満たす有理数$p,q$が存在しなことを示せ

出典:2015年大阪教育大学 入試問題
この動画を見る 
PAGE TOP