数検準1級 三項間漸化式 極限 高校数学 - 質問解決D.B.(データベース)

数検準1級 三項間漸化式 極限 高校数学

問題文全文(内容文):
(1)
$A \neq 0$ $a_{1}=1, a_{2}=2A$
$a_{n+2}=2Aa_{n+1}-A^2a_{n}$
一般項を求めよ。


(2)
$\displaystyle \lim_{ x \to \infty }x^2(1=\cos^3 \displaystyle \frac{1}{x})$
極限値を求めよ。

出典:数学検定準1級 過去問
単元: #数学検定・数学甲子園・数学オリンピック等#数列#漸化式#数学検定#数学検定準1級#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$A \neq 0$ $a_{1}=1, a_{2}=2A$
$a_{n+2}=2Aa_{n+1}-A^2a_{n}$
一般項を求めよ。


(2)
$\displaystyle \lim_{ x \to \infty }x^2(1=\cos^3 \displaystyle \frac{1}{x})$
極限値を求めよ。

出典:数学検定準1級 過去問
投稿日:2019.01.21

<関連動画>

帝京大(医)漸化式 合同式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=(1+\sqrt{ 2 })^n+(1-\sqrt{ 2 })^n$
$a_n$は整数であることを示せ
$a_{100}$を3で割った余り

出典:2005年帝京大学医学部 過去問
この動画を見る 

福田の入試問題解説〜北海道大学2022年文系第2問〜数列の一般項の最小と部分和の最小

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B
指導講師: 福田次郎
問題文全文(内容文):
$\left\{a_n\right\}$を$a_1=-15$および
$a_{n+1}=a_n+\frac{n}{5}-2  (n=1,2,3,\ldots)$
を満たす数列とする。
(1)$a_n$が最小となる自然数nを全て求めよ。
(2)$\left\{a_n\right\}$の一般項を求めよ。
(3)$\sum_{k=1}^na_k$が最小となる自然数nを全て求めよ。

2022北海道大学文系過去問
この動画を見る 

北海道教育大 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#北海道教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'91北海道教育大学過去問題
$a_1=b_1=1$ n自然数
$a_{n+1}=a_n+b_n$
$b_{n+1}=4a_n+b_n$
(1){ $a_n+kb_n$ }が等比数列となるようなkを求めよ。
(2)$a_n,b_n$の一般項
この動画を見る 

福井大 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#福井大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
一般項を求めよ$(n$自然数$)$
$a_1=1$
$a_{n+1}=\displaystyle \frac{3}{n}S_n$

出典:福井大学 過去問
この動画を見る 

大阪大 等比数列 訂正

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
訂正
自然数の列
$a_{1},a_{2},a_{3},a_{4},a_{5}$は等比数列
$S=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$
$S'=a_{1}-a_{2}-a_{3}-a_{4}-a_{5}$
$T=a^2_{1}+a^2_{2}+a^2_{3}+a^2_{4}+a^2_{5}$

(1)
$\displaystyle \frac{T}{S}=S'$を示せ

(2)
$T$が素数のとき、$T$の値は?



出典:大阪大学 過去問
この動画を見る 
PAGE TOP