数検準1級 三項間漸化式 極限 高校数学 - 質問解決D.B.(データベース)

数検準1級 三項間漸化式 極限 高校数学

問題文全文(内容文):
(1)
$A \neq 0$ $a_{1}=1, a_{2}=2A$
$a_{n+2}=2Aa_{n+1}-A^2a_{n}$
一般項を求めよ。


(2)
$\displaystyle \lim_{ x \to \infty }x^2(1=\cos^3 \displaystyle \frac{1}{x})$
極限値を求めよ。

出典:数学検定準1級 過去問
単元: #数学検定・数学甲子園・数学オリンピック等#数列#漸化式#数学検定#数学検定準1級#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$A \neq 0$ $a_{1}=1, a_{2}=2A$
$a_{n+2}=2Aa_{n+1}-A^2a_{n}$
一般項を求めよ。


(2)
$\displaystyle \lim_{ x \to \infty }x^2(1=\cos^3 \displaystyle \frac{1}{x})$
極限値を求めよ。

出典:数学検定準1級 過去問
投稿日:2019.01.21

<関連動画>

福田のおもしろ数学252〜平方数であることの証明

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$49,4489,444889,…,444…48…89,…$はすべて平方数である。証明せよ。
この動画を見る 

近畿大 展開 係数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#近畿大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(x+1)(x+3)(x+5)$
$x(x+7)(x+9)(x+11)$

(1)
$x^7$の係数

(2)
$x^6$の係数

出典:2012年近畿大学 過去問
この動画を見る 

【数学B/数列】数列の和Snから一般項anを求める

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
初項から第$n$項までの和$S_n$が次の式で表される数列{$a_n$}の一般項を求めよ。
(1)
$S_n=n^2+4n$

(2)
$S_n=2^{n+1}-4n+1$
この動画を見る 

【数学B】漸化式6パターンを20分でまとめてみた!【まとめ動画】

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
漸化式6パターン解き方解説動画です
この動画を見る 

ヨビノリたくみ 東大 非典型的な漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=\dfrac{\log_x}{x}(x \gt 0)$である.

(1)$f^{(n)}(x)=\dfrac{a_n+b_n\log x}{x^{n+1}}$と表される事を示し,漸化式を求めよ.
(2)$h_n=\displaystyle \sum_{\beta=1}^n \dfrac{1}{k}$を用いて,$a_n,b_n$の一般項を求めよ.

2005東大過去問
この動画を見る 
PAGE TOP