【短時間でマスター!!】等差×等比数列の型の和の求め方を解説!〔現役講師解説、数学〕 - 質問解決D.B.(データベース)

【短時間でマスター!!】等差×等比数列の型の和の求め方を解説!〔現役講師解説、数学〕

問題文全文(内容文):
等差×等比数列の型の和の求め方を解説します。
$S=1+2×2+3×2^3+\cdots+n\cdot2^{n-1}$を求めよ。
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 3rd School
問題文全文(内容文):
等差×等比数列の型の和の求め方を解説します。
$S=1+2×2+3×2^3+\cdots+n\cdot2^{n-1}$を求めよ。
投稿日:2023.05.30

<関連動画>

【数B】数列:2019年第2回高2全統記述模試(河合塾)の第6問を解いてみた!

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列{a[n]}(n=1,2,3,...)は初項-8、公差4の等差数列であり、数列{b[n]}(n=1,2,3,...)は初項から第n項までの和がS[n]=3^n/2(n=1,2,3,...)で与えられる数列である。
(1)数列{a[n]}の一般項a[n]を求めよ。また、数列{a[n]}の初項から第n項までの和を求めよ。
(2)∑[k=1→n](a[k])²を求めよ。
(3)数列{b[n]}の一般項b[n]を求めよ。
(4)nを3以上の整数とするとき、∑[k=1→n]|a[k]b[k]|を求めよ。
この動画を見る 

佐賀大 確率漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023年 佐賀大学 過去問

0,1,2,3のカードから1枚選んでメモをしてもどすのを$n$回くり返し、
選んだカードの和を$S_n$とする。
$S_n$が3で割り切れる確率$p_n$、3で割って1余る確率$q_n$を求めよ。
この動画を見る 

福田の一夜漬け数学〜数列・漸化式(1)〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
次の漸化式を解け。(すべて、a_1=1とする)\\
\\
a_{n+1}=a_n+2\\
\\
a_{n+1}=2a_n\\
\\
a_{n+1}=2a_n+2\\
\\
a_{n+1}=a_n+2n\\
\\
a_{n+1}=2a_n+2^n\\
\\
a_{n+1}=2a_n+2n
\end{eqnarray}
この動画を見る 

帯広畜産大 漸化式 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
帯広畜産大学過去問題
初項~第n項までの和を$S_n$とする。
一般項$a_n$を求めよ。
$S_n = 9- \frac{1}{2}a_n-\frac{1}{3^{n-2}}$
この動画を見る 

【高校数学】部分分数分解の分母に二乗があるパターン

アイキャッチ画像
単元: #恒等式・等式・不等式の証明#数列とその和(等差・等比・階差・Σ)#積分とその応用#不定積分#数学(高校生)
指導講師: 受験メモ山本
問題文全文(内容文):
部分分数分解の分母に二乗がある場合の解説動画です
この動画を見る 
PAGE TOP