福田の数学〜神戸大学2022年理系第3問〜関数の増減と面積 - 質問解決D.B.(データベース)

福田の数学〜神戸大学2022年理系第3問〜関数の増減と面積

問題文全文(内容文):
aを実数、$0 \lt a \lt 1$とし、$f(x)=\log(1+x^2)-ax^2$とする。以下の問いに答えよ.
(1)関数f(x)の極値を求めよ。
(2)$f(1)=0$とする。曲線$y=f(x)$とx軸で囲まれた図形の面積を求めよ。

2022神戸大学理系過去問
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
aを実数、$0 \lt a \lt 1$とし、$f(x)=\log(1+x^2)-ax^2$とする。以下の問いに答えよ.
(1)関数f(x)の極値を求めよ。
(2)$f(1)=0$とする。曲線$y=f(x)$とx軸で囲まれた図形の面積を求めよ。

2022神戸大学理系過去問
投稿日:2022.04.28

<関連動画>

【数Ⅲ】極限:数列の極限と関数の極限の違いを解説します

アイキャッチ画像
単元: #関数と極限#数列の極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列の極限と関数の極限の違いを解説します
この動画を見る 

大学入試問題#155 琉球大学(1987) 極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#琉球大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$f(x)=x^3+2x$のとき
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{f(\sin\ x)}{\sin\ f(x)}$を求めよ。

出典:1987年琉球大学 入試問題
この動画を見る 

#茨城大学(2023) #極限 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 } \displaystyle \frac{1}{x}log(\displaystyle \frac{e^x+1}{2})$

出典:2023年茨城大学
この動画を見る 

関西医科大学 #極限 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#関西医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to \pi } \displaystyle \frac{\sin\ x}{x^2-\pi^2}$を求めよ

出典:関西医科大学
この動画を見る 

What is e?? The essence of e. Why (e^x)’=e^x

アイキャッチ画像
単元: #関数と極限#微分とその応用#数列の極限#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$\displaystyle \lim_{ n \to \infty }(1+\displaystyle \frac{1}{n})^n$
$\displaystyle \lim_{ h \to \infty }(1+h)^{\displaystyle \frac{1}{h}}$

(2)
$y=e^x$

(3)
動画内の図を見て求めよ

(4)
$y=log_{e}x$
$y^1=\displaystyle \frac{1}{x}$
この動画を見る 
PAGE TOP