福田のわかった数学〜高校3年生理系089〜グラフを描こう(11)分数関数、凹凸、漸近線 - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系089〜グラフを描こう(11)分数関数、凹凸、漸近線

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} グラフを描こう(11)\hspace{120pt}\\
\\
y=\frac{x^3}{x^2-1} のグラフを描け。ただし、凹凸、漸近線も調べよ。
\end{eqnarray}
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} グラフを描こう(11)\hspace{120pt}\\
\\
y=\frac{x^3}{x^2-1} のグラフを描け。ただし、凹凸、漸近線も調べよ。
\end{eqnarray}
投稿日:2021.10.29

<関連動画>

【数Ⅲ】微分法:三角関数の微分公式+演習

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数を微分しよう。
①y=2cos(5x/2)sin(x/2)
②y=sin³x
この動画を見る 

【数Ⅲ】微分法の応用:接線と法線 放物線 y²=8x 上の点P(1,-2√2)における接線の方程式を求めよう。

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
放物線 y²=8x 上の点P(1,-2√2)における接線の方程式を求めよう。
この動画を見る 

福田のわかった数学〜高校3年生理系103〜絶対不等式(1)

アイキャッチ画像
単元: #微分とその応用#微分法#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 絶対不等式(1)\\
a^x \geqq x \\
が任意の正の実数xに対して成り立つような\\
正の定数aの値の範囲を求めよ。  
\end{eqnarray}
この動画を見る 

【数Ⅲ】微分法:対数微分法とは?

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
教材: #4STEP(4ステップ)数学#4STEP数学Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【高校数学 数学Ⅲ 微分法】
y=(tan x)^(sin x) (ただし0< x < π/2) をxで微分せよ。
(出典元)4STEP数学Ⅲより
この動画を見る 

福田の数学〜慶應義塾大学2021年理工学部第1問〜直線群と通過範囲

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} tを実数とし、座標平面上の直線l:(2t^2-4t+2)x-(t^2+2)y+4t+2=0\\
を考える。\\
\\
(1)直線lはtの値によらず、定点を通る。その定点の座標は\boxed{\ \ ア\ \ }である。\\
\\
(2)直線lの傾きをf(t)とする。f(t)の値が最小となるのはt=\boxed{\ \ イ\ \ }\\
のときであり、最大となるのはt=\boxed{\ \ ウ\ \ }のときである。また、\\
aを実数とするとき、tに関する方程式f(t)=aがちょうど1個の\\
実数解をもつようなaの値を全て求めると、a=\boxed{\ \ エ\ \ }である。\\
\\
(3)tが実数全体を動くとき、直線lが通過する領域をSとする。またkを\\
実数とする。放物線y=\frac{1}{2}(x-k)^2+\frac{1}{2}(k-1)^2が領域Sと共有点\\
を持つようなkの値の範囲は\boxed{\ \ オ\ \ } \leqq k \leqq \boxed{\ \ カ\ \ }である。
\end{eqnarray}
この動画を見る 
PAGE TOP