大学入試問題#653「綺麗な問題」 獨協医科大学(2014) 積分方程式 - 質問解決D.B.(データベース)

大学入試問題#653「綺麗な問題」 獨協医科大学(2014) 積分方程式

問題文全文(内容文):
$f(x)$は$x \gt -\displaystyle \frac{1}{3}$で定義され
$f"(x)$をもち
$f(x)=2x+\displaystyle \int_{0}^{x} (4x-7t)f'(t) dx$を満たす$f(x)$を求めよ

出典:2014年獨協医科大学 入試問題
チャプター:

00:00 問題紹介
08:20 作成した解答1
08:31 作成し解答2

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(x)$は$x \gt -\displaystyle \frac{1}{3}$で定義され
$f"(x)$をもち
$f(x)=2x+\displaystyle \int_{0}^{x} (4x-7t)f'(t) dx$を満たす$f(x)$を求めよ

出典:2014年獨協医科大学 入試問題
投稿日:2023.11.19

<関連動画>

大学入試問題#650「3秒クッキング」  藤田医科大学(2020) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-3}^{3} x(x+\cos^3x) dx$

出典:2020年藤田医科大学 入試問題
この動画を見る 

大学入試問題#616「これは理系が解くと逆にはまるかも」 名古屋大学(1963)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#名古屋大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x \gt y$とする
$x+y=6,\ xy=4$のとき
$\displaystyle \frac{\sqrt{ x }-\sqrt{ y }}{\sqrt{ x }+\sqrt{ y }}$の値を求めよ。

出典:1963年名古屋大学 入試問題
この動画を見る 

大学入試問題#687「至高の積分」 富山大学(2023) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#富山大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}} \displaystyle \frac{\sin\ x}{1+\sin\ x+\cos\ x} dx$

出典:2023年富山大学 入試問題
この動画を見る 

名古屋大 微分/大小比較 東大大学院数学科卒の杉山さん代講

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$実数
$0 \lt a \lt b \lt 1$
$\displaystyle \frac{2^a-2a}{a-1},\displaystyle \frac{2^b-2b}{b-1}$
大小比較せよ

出典:2004年名古屋大学 過去問
この動画を見る 

二次関数と変域 2024明大中野

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$y=\frac{1}{3}x^2$について、xの変域が$a-6 \leqq x \leqq a$のとき、yの変域は$0 \leqq y \leqq 9$となる。
aの値をすべて求めよ。
2024明治大学付属中野高等学校
この動画を見る 
PAGE TOP