福田のわかった数学〜高校1年生069〜場合の数(8)円順列その2 - 質問解決D.B.(データベース)

福田のわかった数学〜高校1年生069〜場合の数(8)円順列その2

問題文全文(内容文):
数学$\textrm{I}$ 場合の数(8) 円順列(2)
次のような玉を円形に並べる方法は何通りか。
(1)白玉1個、黄玉2個、赤玉3個
(2)白玉2個、赤玉4個
(3)白玉2個、黄玉2個、赤玉2個
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(8) 円順列(2)
次のような玉を円形に並べる方法は何通りか。
(1)白玉1個、黄玉2個、赤玉3個
(2)白玉2個、赤玉4個
(3)白玉2個、黄玉2個、赤玉2個
投稿日:2021.10.21

<関連動画>

サイコロ確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
サイコロ$5$個振って目の和が$7$の倍数になる確率を求めよ.
この動画を見る 

滋賀大・愛知医大 n個のサイコロ 確率 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#愛知医科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
n個のサイコロを投げる$(n \geqq 2)$次の確率を求めよ。
滋賀大学過去問題
(1)出る目の最小値が2
(2)出る目の最小値が2、最大値が5
愛知医科大学過去問題
(3)出る目の積が10の倍数
この動画を見る 

福田の数学〜千葉大学2024年文系第2問〜袋から元に戻さないで球を取り出し得点を考える確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
白球が3個、黒球が5個、赤球が2個入った袋がある。以下のゲームを続けて$n$回続けて行う。
袋から球を1個取り出す。白球だった場合は1点を獲得する。黒球だった場合はさいころを投げて、出た目が3の倍数だった場合には1点、そうでない場合には0点を獲得する。赤球だった場合はコインを投げて、表が出た場合は2点、裏が出た場合は0点を獲得する。取り出した球は袋に戻さない。
(1) $n=2$のとき、総得点がちょうど3点となる確率を求めよ。
(2) $n=3$のとき、総得点がちょうど5点となる確率を求めよ。
(3) $n=3$のとき、総得点が4点以上となる確率を求めよ。
この動画を見る 

福田の数学〜東京慈恵会医科大学2025医学部第1問〜さいころの目の積の確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

$1$個のさいころを$3$回続けて投げるとき、

$k$回目に出る目を$X_k (k-1,2,3)$とする。

このとき、

積$X_1 X_2 X_3$が$10$の倍数になる確率は$\boxed{ア}$、

和$X_1+X_2,X_2+X_3,X_3+X_1$が、

いずれも$6$の倍数にならない確率は$\boxed{イ}$である。

$2025$年東京慈恵会医科大学医学部過去問題
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試理系第4問〜サイコロの目で決まる複素数の値に関する確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#複素数平面#確率#複素数平面#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$i$を虚数単位とし、$z=\frac{1}{2}+\frac{\sqrt3}{2}\ i\$とおく。
さいころを3回ふり、出た目を順に$a,\ b,\ c$とする。
このとき、積$\ abc$が3の倍数となる確率は$\frac{\boxed{アイ}}{\boxed{ウエ}}$である。
また、$z^{abc}=-1$となる確率は$\frac{\boxed{オカ}}{\boxed{キクケ}}$であり、
$z^{abc}=1$となる確率は$\frac{\boxed{コサシ}}{\boxed{スセソ}}$である。

2022明治大学全統理系過去問
この動画を見る 
PAGE TOP