数検準1級2次過去問(2番 数列) - 質問解決D.B.(データベース)

数検準1級2次過去問(2番 数列)

問題文全文(内容文):
2⃣ a,b,cは異なる実数
a,b,c,a,b,c,a,$\cdots$
で表される等比数列は存在しないことを示せ
単元: #数学検定・数学甲子園・数学オリンピック等#数列#数列とその和(等差・等比・階差・Σ)#数学検定#数学検定準1級#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
2⃣ a,b,cは異なる実数
a,b,c,a,b,c,a,$\cdots$
で表される等比数列は存在しないことを示せ
投稿日:2020.12.02

<関連動画>

福田の1.5倍速演習〜合格する重要問題068〜千葉大学2017年度理系第11問〜部分和で定義された数列の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#数列の極限#千葉大学#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{11}}$ 数列$\left\{a_n\right\}$を次の条件によって定める。
$a_1=2$,  $a_{n+1}=1+\frac{1}{\displaystyle1-\sum_{k=1}^n\frac{1}{a_k}}$ (n=1,2,3,$\cdots$)
(1) $a_5$を求めよ。
(2) $a_{n+1}$を$a_n$の式で表せ。
(3) 無限級数$\displaystyle\sum_{k=1}^{\infty}\frac{1}{a_k}$が収束することを示し、その和を求めよ。

2017千葉大学理系過去問
この動画を見る 

群馬大(医)漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=15$であり,$n$を自然数とする.
$a_n-2a_{n-1}+4^n-1$

(1)$a_n$を$n$の式で表せ.
(2)$\displaystyle \sum_{n=1}^{\infty}\dfrac{2^n}{a_n}$

1992群馬大(医)過去問
この動画を見る 

例のアレ

アイキャッチ画像
単元: #数列とその和(等差・等比・階差・Σ)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{1}{1×2×3×4}+\displaystyle \frac{1}{2×3×4×5}+\displaystyle \frac{1}{3×4×5×6}$$+…+\displaystyle \frac{1}{6×7×8×9}+\displaystyle \frac{1}{7×8×9×10}$
この動画を見る 

【高校数学】等差数列の性質~等差数列の証明と等差中項~ 3-3【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
a,6,2aが等差数列のとき、aの値を求めよ
この動画を見る 

そりゃー漸化式でも出せるよね

アイキャッチ画像
単元: #数列
指導講師: 鈴木貫太郎
問題文全文(内容文):
n人を3つのグループに分ける場合の数を$a_{n}$通りとする
$a_{n+1}$と$a_{n}$の関係を式で表せ
$a_{n}$を求めよ$(n \geqq 3)$
この動画を見る 
PAGE TOP