数検準1級2次過去問(2番 数列) - 質問解決D.B.(データベース)

数検準1級2次過去問(2番 数列)

問題文全文(内容文):
2⃣ a,b,cは異なる実数
a,b,c,a,b,c,a,$\cdots$
で表される等比数列は存在しないことを示せ
単元: #数学検定・数学甲子園・数学オリンピック等#数列#数列とその和(等差・等比・階差・Σ)#数学検定#数学検定準1級#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
2⃣ a,b,cは異なる実数
a,b,c,a,b,c,a,$\cdots$
で表される等比数列は存在しないことを示せ
投稿日:2020.12.02

<関連動画>

背景を見破れ!

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.

$\dfrac{1}{2!9!}+\dfrac{1}{3!8!}+\dfrac{1}{4!7!}+\dfrac{1}{5!6!}=\dfrac{n}{10!}$

$\displaystyle \sum_{k=1}^{6}\dfrac{1}{k!(13-k)!}=\dfrac{n}{12!}$
この動画を見る 

福田のおもしろ数学220〜二項係数のシグマ計算

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle\sum^{20}_{k=5} {}_{k}\mathrm{C}_{4}$ を計算して下さい。
この動画を見る 

福田の数学〜早稲田大学2021年人間科学部第5問〜漸化式の作成と値の評価

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$ 半径$r_1=2$の円$O_1$に接する平行でない$2$つの直線がある。接点を$A,B$とし、$2$つの直線の交点を$P$とし、$\angle APB=\frac{\pi}{3}$とする。$O_1$より半径が小さく、$O_1$の中心を通り、直線$AP$と直線$BP$に接する円を$O_2$とする。同様に自然数$n$に対して、$O_n$より半径が小さく、$O_n$の中心を通り、直線$AP$と直線$BP$に接する円を$O_{n+1}$とする。$O_n$の半径を$r_n$とするとき、$\frac{r_n}{r_{n+1}}=\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }}$ となる。次に、$n$個の円$O_1,O_2,\ldots,O_n$の面積の和を$S_n$とするとき、$S_{10}$の整数部分は$\boxed{\ \ ヒ\ \ }$である。

2021早稲田大学人間科学部過去問
この動画を見る 

福田の一夜漬け数学〜数列・階差数列と部分分数分解〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の数列の一般項を求めよ。
$2,4,7,13,24,42,69,107,158,\cdots$

次の和を求めよ。
(1)$\displaystyle \sum_{k=1}^n\frac{1}{4k^2-1}$
(2)$\displaystyle \sum_{k=1}^n\frac{1}{k^2+2k}$
(3)$\displaystyle \sum_{k=1}^n\frac{1}{k(k+1)(k+2)}$
この動画を見る 

奈良女子大 数列の積

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#奈良女子大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P_n=a_1a_2a_3…a_n=\displaystyle \frac{1}{(n+1)(n!)^2}$

(1)
$a_n$を求めよ

(2)
$\displaystyle \sum_{n=1}^\infty a_m$を求めよ

出典:奈良女子大学 過去問
この動画を見る 
PAGE TOP