整数問題 明治大 - 質問解決D.B.(データベース)

整数問題 明治大

問題文全文(内容文):
明治大学 過去問

nを自然数とする.
$9n^5+15n^4+10n^3-4n$
が30の倍数であること示せ
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
明治大学 過去問

nを自然数とする.
$9n^5+15n^4+10n^3-4n$
が30の倍数であること示せ
投稿日:2023.06.21

<関連動画>

合同式と組み合わせの公式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
${}_{30} \mathrm{ C }_{15}$を31で割った余りを求めよ.
この動画を見る 

【高校数学】最大公約数と最小公倍数~知識の整理~ 5-3【数学A】

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
最大公約数と最小公倍数の説明動画です
この動画を見る 

【理数個別の過去問解説】2021年度東京大学 数学 理科・文科第4問(1)解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
東京大学 2021年理科・文科第4問(1)合同式を用いた証明
以下の問いに答えよ。
(1)正の奇数K,Lと正の整数A,BがKA=LBを満たしているとする。Kを4で割った余りがLを4で割った余りと等しいならば、Aを4で割った余りはBを4で割った余りと等しいことを示せ。
(2)正の整数a,bがa>bを満たしているとする。このとき、$A=_{4a+1}C_{4b+1},B=aCb$に対してKA=LBとなるような正の奇数K,Lが存在することを示せ。
(3)a,bは(2)の通りとし、さらにa-bが2で割り切れるとする。$_{4a+1}C_{4b+1}wp4$で割った余りは${}_a \mathrm{C}_b$を4で割った余りと等しいことを示せ。
(4)2021C37を4で割った余りを求めよ。
この動画を見る 

名古屋市立 式の値 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a+b+c=2,ab+bc+ca=3$
$abc=2$のとき、$a^5+b^5+c^5$の値は?

出典:2012年名古屋市立大学 過去問
この動画を見る 

素数判定

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 42^{19}+19^{42}$は素数か?
この動画を見る 
PAGE TOP