【中学数学】2次方程式:図形に関する問題⑪ 右図で、点Pは関数y=1/2x+3上の点で、そのx座標はaである。また、点QはPからx軸に下した垂線とx軸との交点である。a>0のとき、次の問いに答えよ。 - 質問解決D.B.(データベース)

【中学数学】2次方程式:図形に関する問題⑪ 右図で、点Pは関数y=1/2x+3上の点で、そのx座標はaである。また、点QはPからx軸に下した垂線とx軸との交点である。a>0のとき、次の問いに答えよ。

問題文全文(内容文):
右図で、点Pは関数$y=\dfrac{1}{2}x+3$上の点で、そのx座標はaである。また、点QはPからx軸に下した垂線とx軸との交点である。a>0のとき、次の問いに答えよ。
(1)点Pのy座標をaの式で表せ。
(2)△POQの面積が10のとき、点Pの座標を求めよ。
(3)関数$y=\dfrac{1}{2}x+3$とy軸との交点をRとする。△POQの面積が△PORの面積より16大きくなるときの点Pの座標を求めよ。
チャプター:

0:00 オープニング
0:05 問題文
0:20 問題解説(1)
0:44 問題解説(2)
2:47 問題解説(3)
6:54 名言

単元: #数学(中学生)#中3数学#2次方程式
教材: #新中学問題集#新中学問題集(数学)3標準編#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
右図で、点Pは関数$y=\dfrac{1}{2}x+3$上の点で、そのx座標はaである。また、点QはPからx軸に下した垂線とx軸との交点である。a>0のとき、次の問いに答えよ。
(1)点Pのy座標をaの式で表せ。
(2)△POQの面積が10のとき、点Pの座標を求めよ。
(3)関数$y=\dfrac{1}{2}x+3$とy軸との交点をRとする。△POQの面積が△PORの面積より16大きくなるときの点Pの座標を求めよ。
投稿日:2020.12.16

<関連動画>

分数式:埼玉工業~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#文字と式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 埼玉工業

次の恒等式が成り立つようにをうめよ。
$\displaystyle \frac{3}{x^3+1}=\displaystyle \frac{▭}{x+1}+\displaystyle \frac{▭}{x^2-x+1}$
この動画を見る 

2021 慶應志木高校 最初の一題

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
a+b+c=0,abc=2021のとき
(ab+ca)(ca+bc)(bc+ab)=

2021慶應義塾志木高等学校
この動画を見る 

【高校受験対策/数学】関数53

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数53

Q.
図1のように、関数$y=x^2$のグラフがある。
$A$はグラフ上の点で、$x$座標は$-1$である。また、2点$P,Q$はグラフ上を動くものとする。
このとき次の各問に答えなさい。ただし円周率は$\pi$とする。


関数$y=x^2$について、$x$の変域が$-3 \leqq x\leqq 2$のときの$y$の変域を求めなさい。


2点$P,Q$の$x$座標をそれぞれ$1$と$3$とする。
図2のように、$\triangle APQ$を原点$O$を中心として矢印の方向に$360°$回転移動させ、$\triangle APQ$が回転移動しながら通った部分に色をつけた。
このとき色がついている図形の面積を求めなさい。


2点$P,Q$の$x$座標をそれぞれ$3$と$4$とする。
直線$OA$上に四角形$OPQA$と$\triangle OPR$の面積が等しくなるように点$R$を取るとき、$R$の座標を求めなさい。
ただし$R$の$x$座標は負とする。
この動画を見る 

【「式の形」が見えればOK!】平方根:東京都立国立高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \left(\dfrac{\sqrt5+\sqrt3}{\sqrt2}\right)^2+ \left(\dfrac{\sqrt5+\sqrt3}{\sqrt2}\right) \left(\dfrac{\sqrt5-\sqrt3}{\sqrt2}\right)-\left(\dfrac{\sqrt5-\sqrt3}{\sqrt2}\right)^2$を計算せよ.

都立国立高校過去問
この動画を見る 

三平方の定理使わずに解ける?中学入試 甲陽学院

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#中3数学#三平方の定理#過去問解説(学校別)
指導講師: 数学を数楽に
問題文全文(内容文):
四角形ABCDの面積=?
*図は動画内参照

甲陽学院中学校
この動画を見る 
PAGE TOP