【高校数学】 数A-35 三角形の内心・外心・重心・垂心① - 質問解決D.B.(データベース)

【高校数学】 数A-35 三角形の内心・外心・重心・垂心①

問題文全文(内容文):
三角形の3つの①の①は1点で交わる.
(この点$I$を中心として,3辺に接する円をかくことができ,
この円を②といい,中心$I$を三角形に内心という.)

三角形の3つの③の③は1点で交わる.
(この点$O$を中心として,3つの頂点を通る円をかくことができ,
この円を④といい,中心$O$を三角形の外心という.)

三角形の3本の⑤は1点で交わる.
(その交点は,それぞれの⑤を⑥に内分する.)

図は動画内参照
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
三角形の3つの①の①は1点で交わる.
(この点$I$を中心として,3辺に接する円をかくことができ,
この円を②といい,中心$I$を三角形に内心という.)

三角形の3つの③の③は1点で交わる.
(この点$O$を中心として,3つの頂点を通る円をかくことができ,
この円を④といい,中心$O$を三角形の外心という.)

三角形の3本の⑤は1点で交わる.
(その交点は,それぞれの⑤を⑥に内分する.)

図は動画内参照
投稿日:2016.04.11

<関連動画>

大学入試問題#885「油断したら沼るかも」 #奈良県立医科大学(2014) 三角関数と整数問題

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#三角関数#学校別大学入試過去問解説(数学)#数学(高校生)#奈良県立医科大学
指導講師: ますただ
問題文全文(内容文):
$\sqrt{ \displaystyle \frac{a}{20} } \lt \cos\displaystyle \frac{\pi}{8} \lt \sqrt{ \displaystyle \frac{a+1}{20} }$を満たす整数$a$を求めよ。

出典:2014年奈良県立医科大学
この動画を見る 

福田の数学〜慶應義塾大学2022年商学部第1問(1)〜倍数の個数を数える

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)1から1000までの整数のうち、2,3,5の少なくとも2つで割り切れる数
は$\boxed{\ \ アイウ\ \ }$個あり、2,3,5の少なくとも1つで割り切れ、
かつ6で割り切れない数は$\boxed{\ \ エオカ\ \ }$個ある。

2022慶應義塾大学商学部過去問
この動画を見る 

【数A】【整数の性質】最小公倍数、最大公約数の基本1 ※問題文は概要欄

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#整数の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
nは正の整数とする。次のようなnをすべて求めよ。
(1)nと36の最小公倍数が504
(2)nと48の最小公倍数が720

3つの自然数40,56,nの最大公約数が8,最小公倍数が1400であるとき,nをすべて求めよ。

aは自然数とする。a+2は6の倍数であり,a+6は8の倍数であるとき,a+14は24の倍数であることを証明せよ
この動画を見る 

【短時間でマスター!!】順列を解説!〔現役塾講師解説、数学〕

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
順列
男2人、女3人の5人が1列並ぶ。
①両端が女
②男2人が隣り合う
③男が隣りあわない
この動画を見る 

簡単な問題

アイキャッチ画像
単元: #数A#数Ⅱ#複素数と方程式#整数の性質#約数・倍数・整数の割り算と余り・合同式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \omega=1(\omega \neq 1)$であり,
$x=a+b $
$y=a\omega+b\omega^2 $
$z=a\omega^2+b\omega $である.

$ x^3+y^3+z^3$の値をa,bで表せ.
この動画を見る 
PAGE TOP