不定方程式 - 質問解決D.B.(データベース)

不定方程式

問題文全文(内容文):
$4m^2-9n^2-4m-6n=480$
自然数$(m,n)$をすべて求めよ.
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$4m^2-9n^2-4m-6n=480$
自然数$(m,n)$をすべて求めよ.
投稿日:2020.06.08

<関連動画>

福田の共通テスト解答速報〜2022年共通テスト数学IA問題3。プレゼントの交換の確率の問題。

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
第3問\ 複数人がそれぞれプレゼントを一つずつ持ち寄り、交換会を開く。ただし、プレゼントは
全て異なるとする。
プレゼントの交換は次の手順で行う。
手順:外見が同じ袋を人数分用意し、各袋にプレゼントを一つずつ入れたうえで、
各参加者に袋を一つずつでたらめに配る。各参加者は配られた袋の中の
プレゼントを受け取る。

交換の結果、1人でも自分の持参したプレゼントを受け取った場合は、交換をやり直す。
そして、全員が自分以外の人の持参したプレゼントを受け取ったところで交換会を終了する。
(1)2人または3人で交換会を開く場合を考える。
$(\textrm{i})$2人で交換会を開く場合、1回目の交換で交換会が終了するプレゼントの受け取り方は
$\boxed{ア}$通りある。したがって1回目の交換で交換会が終了する確率は$\frac{\boxed{イ}}{\boxed{ウ}}$である。
$(\textrm{ii})$3人で交換会を開く場合、1回目の交換で交換会が終了するプレゼントの受け取り方は
$\boxed{エ}$通りある。したがって1回目の交換で交換会が終了する確率は$\frac{\boxed{オ}}{\boxed{カ}}$である。
$(\textrm{iii})$3人で交換会を開く場合、4回以下の交換で交換会が終了する確率は$\frac{\boxed{キク}}{\boxed{ケコ}}$である。

(2)4人で交換会を開く場合、1回目の交換で交換会が終了する確率を
次の構想に基づいて求めてみよう。
構想:1回目の交換で交換会が終了しないプレゼントの受け取り方の総数を求める。
そのために、自分の持参したプレゼントを受け取る人数によって場合分けをする。

1回目の交換で、4人のうち、ちょうど1人が自分の持参したプレゼントを受け取る場合は
$\boxed{サ}$通りあり、ちょうど2人が自分のプレゼントを受け取る場合は$\boxed{シ}$通りある。
このように考えていくと、1回目のプレゼントの受け取り方のうち、1回目の交換で交換会が
終了しない受け取り方の総数は$\boxed{スセ}$である。
したがって、1回目の交換で交換会が終了する確率は$\frac{\boxed{ソ}}{\boxed{タ}}$である。

(3)5人で交換会を開く場合、1回目の交換で交換会が終了する確率は$\frac{\boxed{チツ}}{\boxed{テト}}$である。
\(4)A,B,C,D,Eの5人が交換会を開く。1回目の交換でA,B,C,Dがそれぞれ自分以外
の人の持参したプレゼントを受け取った時、その回で交換会が終了する
条件付き確率は$\frac{\boxed{ナニ}}{\boxed{ヌネ}}$である。

2022共通テスト数学過去問
この動画を見る 

【数A】図形の性質:チェバの定理とメネラウスの定理ってこういうことだったの? ただの暗記だと思ってたけど全然違った・・・

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#数学(高校生)
教材: #サクシード#サクシード数学Ⅰ・A#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
チェバメネラウスの定理の解説動画です。
この動画を見る 

良問だぜ!自画自賛

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$は自然数であり,$P$は素数である.
$m^6+3^n=7P$
これを解け.
この動画を見る 

信州大学 整数問題 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
信州大学過去問題
$4^{2n-1}+3^{n+1}$は13の倍数であることを示せ。(n自然数)
この動画を見る 

素数になる2次式

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ n^2-54n+504$が素数となる自然数nをすべて求めよ.
この動画を見る 
PAGE TOP