福田の数学〜京都大学2025理系第4問〜平面が定点を通過する条件 - 質問解決D.B.(データベース)

福田の数学〜京都大学2025理系第4問〜平面が定点を通過する条件

問題文全文(内容文):

$\boxed{4}$

座標空間の$4$点$O,A,B,C$は同一平面上にないとする。

$s,t,u$は$0$でない実数とする。

直線$OA$上の点$L$、

直線$OB$上の点$M$、直線$OC$上の点$N$を

$\overrightarrow{ OL }=s\overrightarrow{ OA },\overrightarrow{ OM }=t\overrightarrow{ OB },\overrightarrow{ ON }=u\overrightarrow{ OC }$が

成り立つようにとる。

(1)$s,t,u$が$\dfrac{1}{s}+\dfrac{2}{t}+\dfrac{3}{u}=4$を満たす範囲で

あらゆる値をとるとき、

$3$点$L,M,N$の定める平面$LMN$は、

$s,t,u$の値に無関係な一定の点$P$を通ることを示せ。

さらに、そのような点$P$はただ一つに定まることを示せ。

$2025$年京都大学理系過去問題
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

座標空間の$4$点$O,A,B,C$は同一平面上にないとする。

$s,t,u$は$0$でない実数とする。

直線$OA$上の点$L$、

直線$OB$上の点$M$、直線$OC$上の点$N$を

$\overrightarrow{ OL }=s\overrightarrow{ OA },\overrightarrow{ OM }=t\overrightarrow{ OB },\overrightarrow{ ON }=u\overrightarrow{ OC }$が

成り立つようにとる。

(1)$s,t,u$が$\dfrac{1}{s}+\dfrac{2}{t}+\dfrac{3}{u}=4$を満たす範囲で

あらゆる値をとるとき、

$3$点$L,M,N$の定める平面$LMN$は、

$s,t,u$の値に無関係な一定の点$P$を通ることを示せ。

さらに、そのような点$P$はただ一つに定まることを示せ。

$2025$年京都大学理系過去問題
投稿日:2025.03.12

<関連動画>

福田の数学〜慶應義塾大学2023年薬学部第1問(3)〜3次関数と絶対不等式

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#指数関数と対数関数#微分法と積分法#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)a,bを実数とし、実数xの関数f(x)をf(x)=$x^3$+$ax^2$+$bx$-6とおく。
方程式f(x)=0はx=-1を解に持ち、f'(-1)=-7である。
(i)a=$\boxed{\ \ オ\ \ }$, b=$\boxed{\ \ カ\ \ }$である。
(ii)cは正の実数とする。f(x)≧3$x^2$+4(3c-1)$x$-16がx≧0において常に成立するとき、cの値の範囲は$\boxed{\ \ キ\ \ }$である。

2023慶應義塾大学薬学部過去問
この動画を見る 

【数I】中高一貫校問題集3(数式・関数編)26:数と式:多項式:次の式を展開しよう。(a-b)(a+b)(a²+ab+b²)(a²-ab+b²)

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材: #TK数学#TK数学問題集3(数式・関数編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を展開しよう。(a-b)(a+b)(a²+ab+b²)(a²-ab+b²)
この動画を見る 

√と二乗

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a=1.23456789
$\sqrt{(a-1)^2} +\sqrt{(a-2)^2}=?$
この動画を見る 

【わかりやすく】高校で習う展開公式①(高校数学Ⅰ)

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式を展開せよ。
(1)$(x+2)(x^2-2x+4)$
(2)$(x-3y)(x^2+3xy+9y^2)$
この動画を見る 

この球々はなんや?

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
絶対値のグラフの説明動画です
この動画を見る 
PAGE TOP