福田の数学〜京都大学2025理系第4問〜平面が定点を通過する条件 - 質問解決D.B.(データベース)

福田の数学〜京都大学2025理系第4問〜平面が定点を通過する条件

問題文全文(内容文):

$\boxed{4}$

座標空間の$4$点$O,A,B,C$は同一平面上にないとする。

$s,t,u$は$0$でない実数とする。

直線$OA$上の点$L$、

直線$OB$上の点$M$、直線$OC$上の点$N$を

$\overrightarrow{ OL }=s\overrightarrow{ OA },\overrightarrow{ OM }=t\overrightarrow{ OB },\overrightarrow{ ON }=u\overrightarrow{ OC }$が

成り立つようにとる。

(1)$s,t,u$が$\dfrac{1}{s}+\dfrac{2}{t}+\dfrac{3}{u}=4$を満たす範囲で

あらゆる値をとるとき、

$3$点$L,M,N$の定める平面$LMN$は、

$s,t,u$の値に無関係な一定の点$P$を通ることを示せ。

さらに、そのような点$P$はただ一つに定まることを示せ。

$2025$年京都大学理系過去問題
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

座標空間の$4$点$O,A,B,C$は同一平面上にないとする。

$s,t,u$は$0$でない実数とする。

直線$OA$上の点$L$、

直線$OB$上の点$M$、直線$OC$上の点$N$を

$\overrightarrow{ OL }=s\overrightarrow{ OA },\overrightarrow{ OM }=t\overrightarrow{ OB },\overrightarrow{ ON }=u\overrightarrow{ OC }$が

成り立つようにとる。

(1)$s,t,u$が$\dfrac{1}{s}+\dfrac{2}{t}+\dfrac{3}{u}=4$を満たす範囲で

あらゆる値をとるとき、

$3$点$L,M,N$の定める平面$LMN$は、

$s,t,u$の値に無関係な一定の点$P$を通ることを示せ。

さらに、そのような点$P$はただ一つに定まることを示せ。

$2025$年京都大学理系過去問題
投稿日:2025.03.12

<関連動画>

【高校数学】  数Ⅰ-74  絶対値を含む関数のグラフ①

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の関数のグラフを書き、その値域を求めよう。
①$y=| 2x+4 |(-3 \leqq x \leqq 1)$

②$y=| x |+| x-1 |$
この動画を見る 

福田のおもしろ数学197〜正五角形の辺、対角線の積の値

アイキャッチ画像
単元: #数Ⅰ#複素数平面#図形と計量#三角比への応用(正弦・余弦・面積)#図形への応用#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
半径$1$の円に内接する正五角形$\mathrm{ABCDE}$について$\mathrm{AB}\cdot\mathrm{AC}\cdot\mathrm{AD}\cdot\mathrm{AE}$を求めよ。
この動画を見る 

データの分析 不明なデータがある場合の問題【ユースケ・マセマティックがていねいに解説】

アイキャッチ画像
単元: #数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のデータは、あるパズルに挑戦した10人について、完成するまでにかかった時間x(分)をまとめたものである。ただし、xのデータの平均値を$x̄$で表し、20分を超えた人はいなかったもののとする。次の問いに答えよ。

番号 1 2 3 4 5 6 7 8 9 10
x   13 a 7 3 11 18 7 b 16 3
(x-x̄)² 4 c 16 64 0 d 16 1 25 64

(1) $x̄$の値を求めよ。
(2) aをbの式で表せ。
(3) a、b、c、dの値を求めよ。
(4) xの分散と標準偏差を求めよ。ただし小数第1位を四捨五入せよ。
この動画を見る 

【短時間でマスター!!】二次不等式を全パターン解説!〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
①$x^2-x-2>0$
②$x^2-x-2≦0$
③$x^2-8x+16>0$
④$x^2-8x+16<0$
⑤$x^2-8x+16≧0$
⑥$x^2-8x+16≦0$
この動画を見る 

【三角比の基礎はこれだけ!】三角比の基礎を全て解説!【高校数学 数学】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
【高校数学】三角比の基礎解説動画です
この動画を見る 
PAGE TOP