問題文全文(内容文):
変量xのデータの平均値$x̄$が$35$、分散$Sx^2$が$16$であるとする。この時、次の式によって得られる新しい変量yのデータについて、平均$ȳ$,分散$Sy^2$,標準偏差$Sy$を求めよ。
(1)$y=x-10$
(2)$y=3x$
(3)$y=-\dfrac{1}{2}x+6$
あるクラスの生徒を対象に100点満点の試験を行ったところ,平均値は68点,分散は36であった。得点調整のため,生徒全員の得点を2.5倍して,更に30点を加えたとき,得点調整後の平均値,分散,標準偏差を求めよ。
変量xのデータの平均値$x̄$が$35$、分散$Sx^2$が$16$であるとする。この時、次の式によって得られる新しい変量yのデータについて、平均$ȳ$,分散$Sy^2$,標準偏差$Sy$を求めよ。
(1)$y=x-10$
(2)$y=3x$
(3)$y=-\dfrac{1}{2}x+6$
あるクラスの生徒を対象に100点満点の試験を行ったところ,平均値は68点,分散は36であった。得点調整のため,生徒全員の得点を2.5倍して,更に30点を加えたとき,得点調整後の平均値,分散,標準偏差を求めよ。
チャプター:
00:00 前半の問題紹介
00:34 公式の証明
04:01 前半の問題の解説
04:24 後半の問題の紹介
04:56 後半の問題の解説
単元:
#数Ⅰ#データの分析#データの分析#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
変量xのデータの平均値$x̄$が$35$、分散$Sx^2$が$16$であるとする。この時、次の式によって得られる新しい変量yのデータについて、平均$ȳ$,分散$Sy^2$,標準偏差$Sy$を求めよ。
(1)$y=x-10$
(2)$y=3x$
(3)$y=-\dfrac{1}{2}x+6$
あるクラスの生徒を対象に100点満点の試験を行ったところ,平均値は68点,分散は36であった。得点調整のため,生徒全員の得点を2.5倍して,更に30点を加えたとき,得点調整後の平均値,分散,標準偏差を求めよ。
変量xのデータの平均値$x̄$が$35$、分散$Sx^2$が$16$であるとする。この時、次の式によって得られる新しい変量yのデータについて、平均$ȳ$,分散$Sy^2$,標準偏差$Sy$を求めよ。
(1)$y=x-10$
(2)$y=3x$
(3)$y=-\dfrac{1}{2}x+6$
あるクラスの生徒を対象に100点満点の試験を行ったところ,平均値は68点,分散は36であった。得点調整のため,生徒全員の得点を2.5倍して,更に30点を加えたとき,得点調整後の平均値,分散,標準偏差を求めよ。
投稿日:2023.06.06