問題文全文(内容文):
どの項も正である数列$\{a_n\}$について
$(a_{n+1})^2+a_na_{n+2}\leqq a_n+a_{n+2}$
が成り立つとき、
$a_{2024}\leqq 1$を示せ。
どの項も正である数列$\{a_n\}$について
$(a_{n+1})^2+a_na_{n+2}\leqq a_n+a_{n+2}$
が成り立つとき、
$a_{2024}\leqq 1$を示せ。
単元:
#数列#漸化式#数学(高校生)#数B
指導講師:
福田次郎
問題文全文(内容文):
どの項も正である数列$\{a_n\}$について
$(a_{n+1})^2+a_na_{n+2}\leqq a_n+a_{n+2}$
が成り立つとき、
$a_{2024}\leqq 1$を示せ。
どの項も正である数列$\{a_n\}$について
$(a_{n+1})^2+a_na_{n+2}\leqq a_n+a_{n+2}$
が成り立つとき、
$a_{2024}\leqq 1$を示せ。
投稿日:2024.10.23





