【高校受験対策】数学-関数39 - 質問解決D.B.(データベース)

【高校受験対策】数学-関数39

問題文全文(内容文):
和夫さんは、本を返却するために家から1800m離れた図書館へ行った。和夫さんは午後4時に家を出発し、毎分180mの速さで5分間走った後、毎分90mの速さで10分間歩いて、図書館に到着した。
その後、本を返却してしばらくたってから図書館を出発し、家へ毎分100mの速さで歩いて帰ったところ、午後4時45分に到着した。

次の図は、午後4時$x$分における家からの道のりを$y$mとして、$x$と$y$の関係をグラフに表したものである。
次の間1~間4に答えなさい。

問1
和夫さんは午後4時3分に郵便局の前を通った。家から郵便局の前までの道のりを求めなさい。

問2
和夫さんが図書館へ行く途中で、歩き始めてから図書館に着くまでの$x$と$y$の関係を式で表しなさ い。ただし、$x$の変域を求める必要はありません。

間3
和夫さんが図書館にいた時間は何分間か、求めなさい。

問4
妹の美紀さんは、午後4時18分に家を出発し、和夫さんと同じ道を通り、図書館へ一定の速さで向かったところ、午後4時33分に和夫さんと出会った。美紀さんが図書館へ向かったときの速さは毎分何mか求めなさい。
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
和夫さんは、本を返却するために家から1800m離れた図書館へ行った。和夫さんは午後4時に家を出発し、毎分180mの速さで5分間走った後、毎分90mの速さで10分間歩いて、図書館に到着した。
その後、本を返却してしばらくたってから図書館を出発し、家へ毎分100mの速さで歩いて帰ったところ、午後4時45分に到着した。

次の図は、午後4時$x$分における家からの道のりを$y$mとして、$x$と$y$の関係をグラフに表したものである。
次の間1~間4に答えなさい。

問1
和夫さんは午後4時3分に郵便局の前を通った。家から郵便局の前までの道のりを求めなさい。

問2
和夫さんが図書館へ行く途中で、歩き始めてから図書館に着くまでの$x$と$y$の関係を式で表しなさ い。ただし、$x$の変域を求める必要はありません。

間3
和夫さんが図書館にいた時間は何分間か、求めなさい。

問4
妹の美紀さんは、午後4時18分に家を出発し、和夫さんと同じ道を通り、図書館へ一定の速さで向かったところ、午後4時33分に和夫さんと出会った。美紀さんが図書館へ向かったときの速さは毎分何mか求めなさい。
投稿日:2019.01.20

<関連動画>

式の値 ラ・サール 2023

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
\begin{eqnarray}
\left\{
\begin{array}{l}
x = \sqrt 7 + \sqrt 2 \\
y = \sqrt 7 - \sqrt 2
\end{array}
\right.
\end{eqnarray}

$x^4 - 6x^2y^2 +y^4 = ?$

2023ラ・サール学園
この動画を見る 

三平方の定理?いやいや〇〇でしょ  A

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#三平方の定理#三角形と四角形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
AD=?
*図は動画内参照

久留米大学附設高等学校
この動画を見る 

【簡潔に予習・復習!】多項式(式の利用):教科書順で内容確認~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#式の計算(単項式・多項式・式の四則計算)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
多項式に関して解説していきます.
この動画を見る 

【中2数学/期末テスト対策】連立方程式の利用②

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
2桁の自然数がある。
この数の十の位の数字と一の位の数字の和は9で、十の位と一の位の数を入れ替えてできる数は、もとの数より9だけ小さい。
もとの2けたの自然数を求めなさい。
この動画を見る 

【テスト対策・中2】3章-2

アイキャッチ画像
単元: #数学(中学生)#中2数学#1次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の1次関数の式を求めなさい。

①2点$(-2,5)、(1、-4)$を通る直線

②変化の割合が$5$で、$x=2$のとき$y=6$となる直線

③$x$軸に平行で、点$(-2,3)$を通る直線

④2直線$y=3x+6、y=-2x+1$の交点を通り、$y=\dfrac{1}{3}x-2$と平行な直線
この動画を見る 
PAGE TOP